Fast SMT-Based Fault Tolerance Verification for
Wide Area Networks

Paper ID: #240, Number of Pages: 15+10,
Ning Kang!®, Peng Zhang?®, Hao Li*®, and Jianyuan Zhang*

Xi’an Jiaotong University, Xi’an, China
{'kangning@stu., *p-zhang@, >hao.li@, %2244313675@stu.}xjtu.edu.cn

Abstract. Configurations of routing protocols in wide area networks
(WANS) are highly sophisticated and prone to bugs, leading to severe
network outages and security breaches. SMT-based network verification
can assist operators in checking the configurations, but it still faces scala-
bility challenges when reasoning about failures: to check whether a prop-
erty holds when no more than k links fail, a verifier needs to explore a
tremendous space of failure scenarios. To this end, this paper proposes
VeriBoost, a method that can leverage the topology features of WANs to
reduce the space of failure scenarios, thereby improving the scalability
of SMT-based verification on WANs. VeriBoost achieves the reduction
by pruning links that are irrelevant to a property, and compressing mul-
tiple links whose failures have an equivalent impact on the property.
Experiments on real WAN topologies show that it speeds up SMT-based
verification by 2-47x.

Keywords: SMT - Verification - Wide Area Network - Failures.

1 Introduction

Configuring a modern network is difficult and prone to bugs, which can lead to
severe network outages and security breaches [1,4,7,23,27,33,36]. These bugs
are often latent: misconfigurations are hidden in tens of thousands of configura-
tion lines, and a property violation, e.g., blackhole, is only triggered when some
links or nodes fail [4]. To prevent this, SMT-based verifiers [3-5,9,24,30,32] are
proposed. They can prove or disprove whether a given property holds when no
more than £ links or nodes fail simultaneously.

However, scalability is still one of the most important challenges faced by
SMT-based verifiers, due to their implicit enumerative manner. To check whether
a property holds when no more than k links fail, verifiers need to consider all
E?:o C} possible link failure combinations, where [is the number of links. Here,
a property holds for failure tolerance k if it is satisfied under any combination
of up to k link failures. Such a large SMT solving space significantly limits the
scalability of verifiers. Our experiments show that to verify 300 properties with
k=1,2,3 on a 158-node WAN, SMT-based verifiers take 12 hours (see §5.3).

Some previous efforts tried to enhance the scalability of SMT-based verifiers.
However, we observe they achieve limited improvement on WANSs. For example,

https://orcid.org/0009-0009-3977-5093
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-8776-6911

2 N. Kang et al.

Bonsai [32] and Origami [17] exploit the symmetric structure of data center
networks (DCNs) to compress the network state, whereas WAN topologies lack
such symmetry. BiNode [26] assumes that the network configurations follow the
Gao-Rexford principle [16], and Trailblazer [21] only considers the failures of links
on packet forwarding paths. These methods are limited by the complex routing
policies of WANs. Moreover, NetSMT [12] is ineffective when the property holds,
i.e., when the SMT formula has no solution.

To this end, we ask “Is it possible to reduce the failure space without assum-
ing symmetric topology structures or special routing policies?” Our answer is
affirmative based on the following two observations.

1. Failures of some links are irrelevant to the property of interest. For example,
a link that appears only in loop paths can never be used for the best routes,
because there always exists a non-loop (i.e., simple) path [35] with strictly
higher preference. Generally, we prove that links that do not appear on any
simple path are irrelevant to the property and can be pruned (THEOREM 1).

2. Failures of some links have an equivalent impact on the property of interest.
For example, if the best route initially propagates along path,, and the failure
of either of two links A and B causes it to switch to pathso, then these two
link failures have the same impact on route propagation of the property.
Generally, we show that such an equivalence of links is transitive, and a
group of equivalent links can be compressed (THEOREM 3).

When realizing the SMT solving space reduction approach, we are faced with
the problem: how to efficiently identify irrelevant or equivalent links, without
loss of accuracy? First, to identify irrelevant links, a straightforward way is to
find all simple paths, and exclude all links that appear on any of those simple
paths. However, finding all simple paths on a graph is shown to be NP-hard [35].
For example, on a WAN topology containing 158 routers (189 links), computing
simple paths for a pair of nodes using depth-first search takes more than 4 hours.
Second, to identify equivalent links, we have to analyze the impact of each single
link failure, and check whether any pair of links have the same impact. This
requires extra verification (by solving an SMT formula), clearly an overkill.

In this paper, we introduce VeriBoost, a method that can efficiently reduce
the failure space for SMT solvers, and thereby improve the scalability of network
verification on WANSs. First, VeriBoost leverages point biconnected components
[31] to transform the topology into a concise tree representation (termed block-
cut tree or block-point tree [18]), where each node represents a set of nodes
forming a point biconnected component. We show that by traversing the tree
we can collect all links on all simple paths in polynomial time. Second, instead
of identifying all equivalent links which requires verification, VeriBoost tries to
find a subset of equivalent links, solely based on graph features. For example, we
show that if a node has a degree of 2, then failing the adjacent links will have the
same impact on routing propagation. Based on this fact, VeriBoost can already
identify many links that are equivalent based on our datasets. Specifically, both
methods achieve a 78% reduction in the number of links (see §5.1), and their
computation time is within 700us for the real WAN topology (see Appendix A).

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 3

In summary, our contribution is three-fold:

— We propose VeriBoost, a new method that improves the scalability of SMT-
based verifiers on WANS, by reducing the SMT solving space.

— We formally prove that the SMT solving space reduction preserves verifica-
tion correctness.

— We apply VeriBoost to SMT-based verification method [8] and show that it
achieves a speedup of 2-47x on real WAN topologies, while the state-of-the-
art method [12] achieves only a 2-3x speedup. The source code of VeriBoost
is currently available (see §6) and will be open-sourced upon acceptance.

2 Motivation

2.1 Background

Network misconfigurations. Network configurations are complex and prone
to bugs. Worse still, many bugs in network configurations are latent, and can
only be triggered when some nodes or links fail. For example, consider a network
where a packet is normally forwarded along path;. If a link on path; fails, the
packet is rerouted to paths. However, if a node along paths filters traffic and does
not permit this packet, it will be dropped, creating a blackhole [4]. To prevent
these latent bugs, researchers have developed many SMT-based verifiers that
can comprehensively reason about the impact of arbitrary node/link failures.
Specifically, they check whether a given property always holds when no more
than k nodes/links fail. We refer to such verification as “fault tolerance” or “k-
failure” verification, and use failure scenario to denote which links are down and
which are up (see Definition 1).

SMT-based fault tolerance verification methods model the verification
problem as a set of SMT formulas N A =P, where N encodes the behaviors of
the network under a given configuration, and P encodes the property that the
network should satisfy. [3-5,24,30,32]. To reason about link failures, the SMT
formula becomes N A =P A K, with K encoding the arbitrary < k link failures:
> i failed; < k, where [€ L denotes a link, and failed; is a pseudo-boolean
variable representing whether link [fails or not, with), failed; representing
the numerical sum of the variables failed;, and L is the set of all links in the
network. Then, the verifiers try to find a solution satisfying the SMT constraints
with off-the-shelf solvers like Z3 [9]. If there is such a solution, it indicates that
the property is violated under some link failures; otherwise, the property holds
when no more than k& links fail. Although SMT-based verifiers do not explicitly
enumerate the failure scenarios, they still involve O(Zfzo C|iL\) iterations.

2.2 Related Work

SMT-based verifiers offer flexibility for verifying a wide range of properties, but
their scalability is limited, motivating many studies to accelerate them [5,12,17,
21,26]. However, these methods are ineffective for WANs, as summarized below.

4 N. Kang et al.

Reducing encoded variables via topology symmetry. Data centers use
topologies like multi-stage Clos networks [2], which are regular: symmetric with
multiple layers (core, spine, and leaf), and multiple nodes have primary-backup
relationships. Based on this regularity, some tools compress the large topology
into a smaller one (with many fewer nodes and links) for speedup. For example,
Origami [17] and Bonsai [5] compress a primary node and its backup nodes into
a single one, since the routing behavior of primary and backup nodes are quite
similar. However, such regularity does not hold for WANs. For example, the
real WAN topologies from Topology Zoo [20] have no clear central devices or
hierarchical structures, because the deployment of devices and links is closely
related to geographic locations that are highly random.

Adding constraints via simplified routing policy assumptions. Complex
routing policies are widely used to control route WANs connecting thousands of
Autonomous Systems (ASes) operated by different institutions, such as Internet
Service Providers, companies, and universities, through the complex policies of
the Border Gateway Protocol (BGP) protocol [16]. Some methods tried to im-
prove the scalability, with simplified assumptions on the routing policies, making
them ineffective or raising false positives. For example, BiNode [26] assumes the
network follows the Gao-Rexford principle (e.g., an AS prefers routes from cus-
tomers over those from peers and providers) [16], so as to constrain the search
space. However, it is hard to ensure Gao-Rexford principles on WANSs, with-
out verification. Trailblazer [21] only considers the failures of links appearing on
packet forwarding paths. This implicitly assumes that packets and routes for the
same prefix traverse the same path, which does not hold on WANs [19].

Guiding the solving process through variable ordering. NetSMT [12]
guides the order of SMT solving to quickly find a solution, i.e., a counterexam-
ple that violates a property. However, when the property holds, i.e., the SMT
problem does not have a solution, the SMT solver still has to explore the whole
SMT solving space, making NetSMT ineffective.

Some other methods accelerate SMT-based verification by sacrificing the sup-
port for fault tolerance, and are thus not applicable to our target problem. For in-
stance, the modular approaches LightYear [30], Timepiece [3], and Kirigami [32]
require manual network partitioning and are thus applicable only to a single
failure scenario. Moreover, ACORN [24] ignores path information in its encod-
ing and cannot verify properties such as waypointing (i.e., ensuring that a path
passes through a specific node), also restricting it to a single failure scenario.

3 Overview

3.1 Basic Idea

To speedup fault tolerance verification, our basic idea is to reduce the uncertainty
of link state prior to SMT solving, thereby shrinking the failure space for SMT
solvers. Specifically, for a given property to be verified, suppose that the state of
some links are already known, including those that are “down” (Lp) and those

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 5

Symbolic links:12
Routing path,

—_—

Routing Path,

—_—

(a) Routing paths for Reachability(v\,v,,d,k)
P ~_Irrelevant Symbolic links: 9 i Symbolic links: 5

N\
WX i d d
! X) links ; Path, < Path; i —@ Equivalent
g Path; X i links
|
Pathz \/ :
I
i
1
i
1
i

-~

(b) The network after Link Pruning ' (c) The network after Link Compression
Fig.1. An example of a BGP network with progressively applied Link Pruning and
Link Compression. Each router has a different AS number and runs BGP to exchange
routes. The property to be verified is reachability, that packets from source vi can
reach destination d on w2, even if no more than k links fail. Note that the routing path
and forwarding path are in opposite directions. Our methods can be applied to any k,
hence no specific tolerance is specified here.

that are “up” (Lq). We then treat the remaining links as symbolic links Lg =
L\ (Ly U Lp), whose status is unknown (either up or down). This allows SMT-
based verifiers to encode only the links in Lg as boolean variables, rather than all
links, significantly reducing the solving space. Recall that SMT-based verifiers
need to check N A—P A K, where K £ > icr Jailed; < k. VeriBoost transforms
K into the following constraint, enabling more efficient verification.

= atled; =0 atled; = 1 A atled; < 1
K 4 failed failed failed; < k

leLy leLp leLg

To this end, we present two observations that allow us to identify these
“down” and “up” links without assuming any regular topology structure or spe-
cific routing policy, enabling applicability to WANSs.

Observation 1: For a given property, many failure scenarios are irrele-
vant. To illustrate this, we consider the example in Fig. 1 (a), where each router
has a different AS number and runs BGP to select the best routes. According
to the best route selection of BGP [13,25], a router will prefer a route with
higher local preference and then the AS path length. As specified in [13,25], the
local preference is not propagated among different ASes. Now, the best route is
determined by the AS path length (with a shorter path being preferred). Then,
routes propagated along paths (the AS path length is 4) are always preferred by
node vy, over the routes propagated along pathg (the AS path length is 7), since
paths is a subsequence of pathgz. Therefore, the links on paths (v4-vg) will never
be used by any best route for the property.

6 N. Kang et al.

Based on this observation, when verifying reachability(vy, v, d, k), i.e., pack-
ets sent from node v; can reach prefix d' on node vy even failing any k links,
we can first check whether there are policies that decrease the AS path length
(which is quite uncommon), and if not, we can safely prune the links. We sum-
marize that for a given property, a link excluded by all simple paths® [35] will
not propagate the best route. Thus, we compute the set of all links included
in stmple paths and set the complement of these links as “down” status for the
verifiers. For example, the three links v4-vg, v4-v19, and vg-v1g are reduced in
Fig. 1(b). In this example, the remaining symbolic links amount to 12 —3 =9
links. This effect is more significant in real WAN topology, where the number
of links is reduced from 188 to 126 (a (188 — 126)/188 = 33% reduction) [20],
detailed in Appendix B).

Observation 2: For a given property, many failure scenarios have the
same equivalent impact. To show this, we consider the example after Link
Pruning in Fig. 1(b), where routes at node vs propagate only in two directions,
i.e., to vg or v7. Suppose the best route from vy to vy is propagated via pathq
instead of paths due to smaller route metric values. When the link v7-vg or vg-vg
fails, the best routing path changes from path; to paths because the failure
of either v7-vg or vg-vg blocks vs from selecting the route via vg. Thus, failing
v7-vg and wvg-vg individually or simultaneously have the same impact on route
propagation for the property, and we refer to them as equivalent links.

Based on this observation, when verifying reachability(vy, ve, d, k), we can
remove one of the variables for those links, v7-vg or vg-vg, to create a smaller
model. We summarize that, for each set of equivalent links, we randomly select
one link as a potentially failed link. The remaining links within this set, equiv-
alent to the potentially failed link, are considered “up” status for the verifiers.
For example, four links vi-vy, v1-v3, v5-vg, and vy-vg are reduced in Fig. 1(c).
In this example, the remaining symbolic links are (9 — 4) = 5 links. This effect
is significant in real WAN topology, where the number of links is reduced from
126 to 61 (a (126 — 61)/188 = 34% reduction), detailed in Appendix B).

We highlight that the above methods make no assumptions about topology
structures or routing behaviors that are hard to guarantee. For example, to en-
sure that paths is always preferred over paths, we only need to confirm “the
preference of a path does not decrease when prefixed by a link.” This, in turn,
assumes that “BGP does not propagate local preference across AS,” as standard-
ized by [13,25], and that “AS path length never decreases,” which can be easily
pre-checked. If some routers on the path are configured with routing policies
that modify the AS path (which is quite uncommon [4, 22, 28]), the reduction
can be disabled to avoid false positives.

! The prefix d (i.e., a block of IP addresses, e.g., 112.0.0.1-112.0.0.255) is connected
to node v2. Although the parameter v2 can be omitted, we retain it for clarity.

2 Some literature [10, 34] uses the terms “walk” and “path” to distinguish between
sequences that contain repeated vertices and those that do not, respectively. Other
literature [35] uses “path” and “simple path” for the same distinction. For clarity, we
adopt the latter terminology, e.g., using “routing path” instead of “routing walk.”

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 7

3.2 Challenges

Challenge 1: How to calculate the links that never appear on any
simple path without enumerating all simple paths? From Observation 1,
we know that links that never appear on any simple path are irrelevant links
(THEOREM 1). To identify these links, an intuitive approach would be to first
find all simple paths and then compute the set of links not contained in these
paths. However, identifying all simple paths is shown to be NP-hard [35], as it
requires enumerating all paths between two nodes. Moreover, on the UScarrier
dataset, computing all simple paths between a single pair of nodes took over
4 hours (arbitrarily selecting 10 pairs of far-apart nodes), whereas verifying a
property for k = 3 required only 200 seconds (see §5.3).

Challenge 2: How to judge if two failed links have an equivalent impact
on the best routes without calculating the best routes? From Observa-
tion 2, we know that two links whose failures have an equivalent impact can be
compressed. An intuitive approach to achieve this relies on calculating the best
routes. However, implicitly or explicitly computing the best routes would involve
performing verification again, creating a chicken-and-egg problem, but we aim
to identify equivalent impacts before verification.

4 Detalils

In this section, we first provide the definitions in §4.1. We then introduce Link
Pruning in §4.2 and Link Compression in §4.3 (with formal proof) to address
the challenges described in §3.2. Finally, we show the optimization.

4.1 Network Model

Property. Let T'= (V, L) be a network topology, where V' is the set of vertices
and L is the set of links. Let property(vi,vs,d, k) be the property that packets
from source node v; to prefix d on node vy even if any & links fail, where v; € V'
is the source (destination) node, and vy € V is the destination (source) node in
forwarding (routing). Here, representative properties include [6,19,21,29, 37]:

— Reachability(s,n,d,k): packets sent from s can reach d on n.
— Waypoint(s,n,w,d,k): packets sent from s to d on n, passing through w.
— Loadbalance(s,n,m,d,k): packets sent from s to d on n, along m paths.

Failure scenario. We now clarify the link states. Before verification, links have
three states: down, up, and symbolic (unknown). During verification, the verifiers
will assign symbolic links a concrete state: either up or failed.

Definition 1. We define two types of failure scenarios.

(i) A concrete failure scenario f = (L, L) partitions links L into two subsets:
Ly (up) and Lo (down), i.e., all links have concrete states.

8 N. Kang et al.

(i) A symbolic failure scenario F = (Ly, Lp, Ls, k) partitions links L into three
subsets: Ly (up), Lo (down), and Lg (symbolic). Here, k is the number of
links in Lg that can fail simultaneously.

(iii) We say a symbolic failure scenario F contains a concrete failure scenario f
or f €F,if F.Ly C f.Ly, F.Lp C f.Lp, and |f.Lp\F.Lp| < k, where \
represents the set difference operation.

The third definition states that a symbolic failure scenario contains all con-
crete failure scenarios satisfying the links in F.Lq are up, the links in F.Lp are
down, and no more than k links are failed in F.Lg. Taking Fig. 1(c) as an exam-
ple, a symbolic failure scenario (L, Lo, Ls,2), with Lg = {v4-vs5,v3-vs5, U5-v7,
vg-Us, Va-v7 }, contains C2 = 10 concrete failure scenarios.

Based on the notion of symbolic failure scenario, most existing network ver-
ifiers [4,15] handle a symbolic failure scenario of (&,<, L, k); while we check
(Ly, Lo, Lg, k), and reduce the size of Lg as much as possible before solving.
Related routes. Let R (v1,v2,d) denote the best routes of the devices among
the forwarding and routing paths for the prefix d of property(vi,ve,d, k) under
concrete failure scenario f (The rigorous definition is provided in Appendix C).

4.2 Link Pruning

Observation 1 states that for the given property, the links that do not appear on
any simple path are irrelevant and can be pruned. In the following, we formalize
this observation with a theorem and then prove the theorem.

First, we define irrelevant links and simple paths.

Definition 2. Given a network topology T = (V, L), and property(vy,va,d, k)
to verify, a link | is said to be “irrelevant”, if the best routes related to the prefix
d are the same whether [fails or not, on any concrete failure scenario. Formally,
this can be expressed as:

forVf = (Lw,Lp) : Rip\ {13, Lougy) (V1,02,d) =

(2)
RLwu{ty,Lo\ {13 (V1, v2, d)

Next, we describe how to identify these irrelevant links.

Definition 3. For a graph T = (V, L), a path (or walk) from vy to vg (of length
k) is a non-empty alternating sequence vy, l1,v1,l2, Vo, ..., g, vk of vertices and
links in T such that l; = (v;,vi11) for all i < k [10].

Definition 4. For a graph T = (V, L), a path from uw € V to v € V is said to
be a simple path of T if the vertices in a path are all distinct [10].

Theorem 1. For a network topology T = (V, L) and property(vi,ve,d, k), if
a link does not appear on any simple path of T, then the link is irrelevant.

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 9

Point biconnected component: 0= {vi,v3,v4,vs} Nodes of block-cut tree:
Point biconnected components: @={0,,0,,05,0,} NP0
={n"'nn

Cut points: 7={v4,vs,v7}
(a) The illustration of basic conception (b) Block-cut tree for the example topology

N'= {nm,nvs,nw}

Fig. 2. The example of the block-cut tree for the network in Fig. 1.

To prove this theorem, we make two assumptions: (1) BGP converges to
a unique state, which is true in most practical cases [14,29]. (2) The network
exhibits monotonicity, meaning that the weight of a path does not decrease when
prefixed by a link. This generally holds in common routing protocols, e.g., BGP
and open shortest path first (OSPF) [4,22,28]. The formal description of these
two assumptions can be found in Appendix C.

Proof. (proof sketch) For clarity, we only provide a proof sketch here, and the full
proof is in Appendix D. To prove that a link is irrelevant, according to Definition
2, we only need to prove that the best routes among the forwarding path and
routing path before and after failing this link remain the same. We prove this
by induction, working on the number of routing propagation hops?.

Then, the problem is how to find all links that do not appear on any sim-
ple paths. Note that the straightforward way of computing all simple paths is
NP-Hard [35]. To efficiently identify all irrelevant links, we present a polyno-
mial algorithm. Our algorithm is heavily based on point biconnected component
(PBC), a concept in graph theory [31]. In the following, we introduce the defi-
nition of PBC.

Definition 5. Given a graph T, and a pair of nodes (u,v), if the deletion of any
single node in T (except u and v) does not disconnect u and v, then we say that
u and v are biconnected. If all pairs of two nodes in a graph are biconnected,
then we say the graph is point biconnected. If a subgraph H of T is maximal
point biconnected, meaning it is a point biconnected subgraph of T and no point
biconnected subgraph of T contains H as a proper subgraph, then we say that H
is a point biconnected component.

We will use 6; to represent a PBC, and use © to represent the set of all PBCs
of the graph. For the example in Fig. 2, one PBC is 6; = {v1,v3,v4,v5}, and
9 - {017 927 937 04}

Definition 6. A graph is connected if there exists a path between every pair of
distinct vertices. A cut point in a connected graph G = (V, E) is a vertez v € V
such that the deletion of v causes the graph to become disconnected.

3 We omit the proof for forwarding paths, as it is quite similar.

10 N. Kang et al.

Algorithm 1: Links Pruning

input : T = (V,L): the network topology, v1: the source node of the
property, v2: the destination node of the property.
output : L;: the set of irrelevant links in L.

1 Function IRRELEVANTLINKS(v1, v2,T):
2 7,0 < TARJAN(T) > computing PBC
3 T +BCTREE(n, ©) > constructing T
4 ny1 < Nobe2PBC (v, 7) > src node in T
5 nz < NoDE2PBC (vg,T) > dst node in T
6 N’ < TRAVERSE(n1,n2,7T) > finding path on T
7 0" + Mono({6|n’ € N'}) > checking configs
8 V'« {veblheco}
9 L/(—{(’Ui,’t)j”’l)i GV/,’U]' € V/,(’Ui,’t)j) EL}

10 return L\ L' > returning irrelevant links

We will use 1 to represent the set of all cut points of a graph. For the example
in Fig. 2, n = {v4, v5,v7}.

There is a useful property that a cut point is included in two different point
biconnected components [31]. Based on it, we define the block-cut tree (or block-
point tree) [18].

Definition 7. For an undirected graph T = (V,L), a graph T is the block-
cutpoint tree of T if it satisfies : (1) (Block vertices) For each biconnected compo-
nent 0 of T, there is a corresponding vertex n® in T. (2) (Cut vertices) For each
cut point v of T, there is a corresponding vertex n¥ in T. (3) An edge (n®,n%)
exists in T iff v is a vertex in 6.

According to [18], T is shown to be a tree. For example, Fig. 2 (b) shows the
block-cut tree of the network topology T' in Fig. 2 (a).

Alg. 1 summarizes the process to identify all the irrelevant links in a network.
Stepl. Computing point biconnected components. First, for a given topol-
ogy, we obtain cut points 1 and point biconnected components (PBCs) © using
Tarjan’s algorithm [31] (Line 2).

Step2. Constructing block-cut tree. Next, we construct the block-cut tree
(Line 3). Specifically, given a network topology T with point biconnected com-

ponent set © and cut point set 7, its block-cut tree BCTREE(n, ©) is a graph
T = ({N"UNY} E), where:

N?={n’|0 € ©} ,N" = {n"|v € n} (3)

E={ele=(n",n") v (n’,n"),v €0} (4)
Next, we find nodes ny and ny in T that correspond to the PBCs of the source
node vy and destination node v with NOoDE2PBC (Lines 4-5).

Step3. Identifying irrelevant links. We compute all PBCs on path from n4
to ng on T, with TRAVERSE (Line 6). Note that the source node and destination

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 11

node may not be within the same PBC. For example, from vy to vy, it may
need to pass through three PBCs {61, 63,04}. To confirm monotonicity, we use
a function MONO to check that all nodes in a PBC are configured either with
pure BGP, where the AS path length never decreases, or with OSPF. If not, we
remove all links of the PBC from the down links (Line 7). We then collect all
links L’ within these PBCs (Lines 8-9). Finally, we return the complement set
of L' as irrelevant links (Line 10).

Time complexity. The complexity of IRRELEVANTLINKS is O(|V| + |L|), be-
cause calculating the point biconnected components takes O(|V|+ |L|) [31], and
the remaining part has a lower time complexity. Specifically, we could mark
nodes that are configured with pure BGP and without modifications to the AS
path during configuration parsing, and then MONO requires O(|N|) in this stage;
Since |E| < |L|, TRAVERSE traverses each edge in E once, which takes less than
O(|L]); Since each link will be added to L’ at most once, this requires O(|L]).
Proof of correctness. We prove that Alg. 1 can find all irrelevant links with
the THEOREM 2.

Theorem 2. ForT = (V, L) and property(vy, v, d, k), if | EIRRELEVANTLINKS
(v1,v2,T) in Alg. 1, then | does not appear on any simple path from vy to vs.

The full proof is in Appendix E.

4.3 Link Compression

Observation 2 states that if the failures of two links have the same impact on the
propagation of routes, then these two links are equivalent and can be compressed.
We formally define our notion of equivalence as follows.

Definition 8. Given a network topology T = (V, L), and property(vy,ve,d, k)
to verify, links 11 and ly are said to be “equivalent” if the best routes related
to prefix d are the same either Iy or ly fails, on any concrete failure scenario,
formally stated as:

forVf = (Lu,Lp) : R \{i1 1,000} (V1,02,d) =

(5)
R(Li\ {12}, L U{12}) (V1, V2, d)

By compressing equivalent links into a single one, we can reduce the SMT
solving space. Then, the problem is how to identify the equivalent links? The
straightforward way is to fail each of the two links and analyze their impact
of these failures, which is equivalent to another round of verification (solving
SMT problem or simulating route computation). This clearly is an overkill for
this problem. We set out for a less ambitious goal: instead of identifying all
equivalent links, we try to find a subset of equivalent links solely based on the
graph features. Next, we show the algorithm, and prove its correctness.

Definition 9. For T = (V,L), a path from v € V to v € V is said to be a
“trivial path” of T if the degrees of u and v are not 2, and other nodes (except u
and v) have degree 2.

12 N. Kang et al.

Theorem 3. For T = (V, L) and property(vy,vs,d, k), if two links l; and Iy
do not both contain either vi or vy and appear on a trivial path of T, then [y
and ly are equivalent.

Proof. (proof sketch) The full proof is in Appendix F. To prove that two links
are equivalent, we need to show that the best routes among the forwarding path
and routing path after failing these two links remain the same. The proof is
similar to the proof of THEOREM 1, both using induction. The difference is that
the induction is based on the number of endpoints of trivial paths.

Actually, a group of equivalence links has the property that any two links
within the group are equivalent, which allows us to compress all the links within
the group into a single link. This is due to the transitivity of equality in DEF-
INITION 8, the equivalence of links also exhibits transitivity: if /1 and [l are
equivalent, and [; and I3 are equivalent, then [, and [3 are also equivalent. Due
to this transitivity, we know all links in one trivial path are all equivalent.

For a given property, we use a depth-first search to traverse all links and

nodes once. This allows us to identify all t¢rivial paths. Next, for each trivial
path, the links on it form a link set S. Then, we randomly select one link as a
symbolic link from S, which may potentially fail. The remaining links within S
are all treated as equivalent links to this symbolic link, and are treated as up
links. We call this method a function EQUIVALENTLINKS(v1,va,T).
Time complexity. The complexity of EQUIVALENTLINKS is O(|V |+ |L]), as it
traverses all links and nodes twice, i.e., find all trivial paths and symbolic links.
Proof of correctness. We prove the correctness of EQUIVALENTLINKS follow-
ing THEOREM 3.

4.4 Optimizations

Property trimming. VeriBoost pre-checks the connectivity of the property on
the network topology before Link Pruning and Link Compression. If the toler-
ance value of a property to be verified is k, there must be more than %k disjoint
paths in the topology. Here, we use the minimum cut to effectively calculate the
number of disjoint paths. If the property fails this check, VeriBoost promptly
returns it as violated.

5 Evaluation

We evaluate VeriBoost on real topologies to address the following questions:

— Is VeriBoost effective on different irregular topologies? We show that Veri-
Boost achieves a 40% reduction in symbolic links across all 260 real topolo-
gies, and an 80% reduction in 78% of them (§5.1).

— Is Veriboost correct on real datasets? We show that our verification results
are identical to the results of existing verifiers (§5.2).

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 13

Table 1. The statistics of WAN datasets, where datasets with “-O” are OSPF datasets,
and others are BGP datasets.

Datasets ‘Ren Arn Bic-O Bic‘Esn Lat Col-O Col ‘ Clt Usc-O Usc Cog

Category Small Medium Large
Nodes 34 35 33 33|69 70 70 70 | 154 158 158 198
Links 44 47 48 48 |8 75 85 85 | 178 189 189 244

Lines (x10®)| 48 5.0 3.0 69|92 91 6.1 11.5[206 13.7 22.0 27.1

— How does VeriBoost speed up SMT-based verifier? We show that it speeds
up the SMT-based verifier by 2-47x (§5.3).

— How do optimizations contribute to VeriBoost? We show that Link Pruning,
Link Compression contribute similarly, and Property Trimming contributes
little; The time for them ranges from microseconds to milliseconds, which is
negligible, compared to the seconds-level verification. (For clarity, we present
these two experiments in Appendix A and report only the conclusions here.)

Implementation. We implemented VeriBoost with 4k lines of Java code, and
applied it to the SMT-based verifier.

Approaches for comparison. We choose Minesweeper [4] as the SMT-based
baseline for comparison, because it is one of the most feature-complete SMT-
based verifiers and has been widely adopted as a baseline by many works [5,12,17,
21,26]. We also compare with NetSMT [12], the state-of-the-art speedup method
for SMT-based verification. We do not compare to other speedup methods for the
following reasons. Origami [17] and Bonsai [5] target only data center networks
(DCNs) [12]. Trailblazer has false positives due to missing hot edges as analyzed
in [19]. As for BiNode, we found it to be slower than Minesweeper on our WAN
datasets, which involve solely the BGP protocol or OSPF protocol*. This adds
overhead without being paid off on our WAN datasets. Other methods, such as
ACORN |[24], Kirigami [32], Lightyear [30], and Timepiece [3], do not support
fault tolerance verification.

Properties. We consider three properties as shown in §4.1 and select 25 pairs
that can possibly hold for each k£ = 0,1,2,3. Thus, we have 3 x 4 x 25 = 300
properties for each network. We verify 300 properties because Minesweeper times
out after 12 hours on the Uscarrier dataset alone. For a fair comparison, we select
pairs that avoid cases where both nodes fall within a point biconnected component
containing only a few nodes, thereby worsening the speedup of VeriBoost.

Datasets. VeriBoost has two stages: (1) reducing the symbolic links and (2)
applying the reduction to verifiers. For the first step, we use the all 260 real-
world WAN network topologies from the Topology Zoo [20] for the comparison
experiments. For the second stage, real-world WAN configurations are typically
confidential and not publicly available. Therefore, existing works [6,12] mostly
rely on synthesizing configurations from real topologies using the approach in
[11]. To avoid arbitrarily selecting unrepresentative topologies, we follow prior

4 To handle the dependency between BGP and OSPF, BiNode replicates the variables
associated with each BGP route.

14 N. Kang et al.

=== Link Compression Link Pruning — Both Methods
00% k

80%
60%
40%
20%

0%

CCDF (%)

0% 20% 40% 60% 80% 100%
Reduction Ratio in Symbolic Links

Fig.3. The CCDF of the reduction ratio for 260 real topologies, when applying Link
Compression, Link Pruning, or both methods.

work. As summarized in Table 1, Fang et al. [12] considered nine representative
topologies for BGP configuration synthesis, while Birkner et al. [6] considered
three for OSPF configuration synthesis.

Setup. All experiments run on a Linux server with two 16-core Intel Xeon Gold
6226R CPUs @2.9GHz and 256G memory.

5.1 Effectiveness of Veriboost

We evaluate the effectiveness across 260 real WAN topologies. For each topology,
we use VeriBoost to compute the average number of symbolic links across all-pair
properties. We quantify the effectiveness using the reduction ratio, calculated by
the following equation:

of reduced links
of original links

reduction ratio = (6)
Fig. 3 shows that VeriBoost achieves a 40% reduction ratio in symbolic links
for 100% of the topologies, while achieving a 78% reduction ratio for 80% of
the topologies. Moreover, Link Pruning and Link Compression yield similar
improvements, indicating that applying them simultaneously is necessary.

5.2 Correctness of Veriboost

We verified 300 properties with & = 1, 2, 3. For SMT-based verification, the prop-
erties that hold for Minesweeper [4], NetSMT [12] and VeriBoost are consistent.
The numerical results are provided in the Appendix, as shown in Table 2.

5.3 Speedup for SMT-based Verification

We separately verified 300 properties with k& = 1, 2, 3 respectively using Minesw-
eeper, NetSMT, and VeriBoost. Fig. 4 and Fig. 6 show that VeriBoost acceler-
ates Minesweeper by 2x to 47x. In contrast, NetSMT only speeds up by 2-3x.
Although the speedup of VeriBoost varies across different datasets, overall, it
increases with the network scale and the tolerance values of the properties being
verified, showing that VeriBoost benefits more in larger search spaces.

Fig. 5 shows the details of the speedup of NetSMT and VeriBoost for verifying
a single property (We show one dataset for each size and omit the results for

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 15

- Minesweeper i 8 NetSMT 72 VeriBoost

10 10° 108
—~10?]()ry k=2 10_4: k=3
T 102 103 103
g ’ 103 10)
s’ M I RE | R T

10! EE | 10! [hﬂﬂ [EB, i 100

'%, % o&’ v/%/(\// C\o @%ﬁ/&@@@,ﬁ)foo/o/%% @, 5 ’o ,)v/ o/(\//%oo

(¢ K

&

$

Fig.4. Comparison of SMT-based verification for BGP datasets: Total time for veri-
fying 300 properties, using Minesweeper, NetSMT, and VeriBoost.

Minesweeper-SAT NetSMT-SAT VeriBoost-SAT
Minesweeper-UNSAT £ NetSMT-UNSAT VeriBoost-UNSAT
5 50 200
= 4 Bics-BGP 40 |- Columbus-BGP 160 |- Uscarrier-BGP
T 3 30 120
E 2 20 80
- 40
(1) i 18 N JELm 10 b .Jlm BN
k=1 k=2 k=3 k=1 = =3 k=1 k=2 k

Fig. 5. Comparison of SMT-based verification: Average time for verifying a single prop-
erty on BGP networks under different tolerance levels using Minesweeper, NetSMT,
and VeriBoost. The SAT (UNSAT) time corresponds to the average time when the
property is violated (holds). Negative values (Y-axis) mainly clarify the differences.

Mlnesweeper NetSMT B 72 VeriBoost
k=2 k=3
@ 10
z
Q
£ 10 ; E, E 7
7 7 ,
= z N] - z E
/('\ 0/ x(6) (o/ % '~ o /S(

Fig. 6. Comparison of SMT-based verification for OSPF datasets: Total time for veri-
fying 300 properties, using Minesweeper, NetSMT, and VeriBoost.

OSPF for clarity.). We distinguish between two types of properties: for properties
that hold, there are no solutions to the SMT problem (UNSAT); for properties
that do not hold, there exist one or more solutions to the SMT problem (SAT).
For SAT properties, both NetSMT and VeriBoost achieve more than one order of
magnitude speedup. For UNSAT properties, NetSMT provides no improvement,
whereas VeriBoost still delivers roughly an order of magnitude speedup.

6 Conclusion

We propose VeriBoost, a tool that can accelerate SMT-based verifiers in WANs
by reducing the SMT solving space before verification. Specifically, VeriBoost uses
Link Pruning to prune irrelevant links and Link Compression to compress equiv-
alence links in WANs. We implement VeriBoost in SMT-based method, and eval-
uate VeriBoost on real topologies. Results show that VeriBoost can scale better
to large WANs and is faster than the SOTA tool by an order of magnitude. In
future work, we aim to extend VeriBoost to accelerate simulation-based verifiers.
Data Availability. The artifact, including the source code and experiment logs,
is available at https://anonymous.4open.science/r/veriboost-fm26/.

https://anonymous.4open.science/r/veriboost-fm26/

16

N. Kang et al.

References

10.

11.

12.

13.

14.

Abhashkumar, A., Gember-Jacobson, A., Akella, A.: Tiramisu: Fast multilayer
network verification. In: 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). pp. 201-219 (2020). https://doi.org/10.23919/
ifipnetworking55013.2022.9829765

Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center net-
work architecture. ACM SIGCOMM computer communication review 38(4), 6374
(2008). https://doi.org/10.1145/1402958. 1402967

. Alberdingk Thijm, T., Beckett, R., Gupta, A., Walker, D.: Modular control plane

verification via temporal invariants. Proceedings of the ACM on Programming
Languages 7(PLDI), 50-75 (2023). https://doi.org/10.1145/3591222

Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network
configuration verification. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. pp. 155-168 (2017). https://doi.org/
10.1145/3098822.3098834

Beckett, R., Gupta, A., Mahajan, R., Walker, D.: Control plane compression.
In: Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. pp. 476-489 (2018). https://doi.org/10.1145/3230543.
3230583

Birkner, R., Drachsler-Cohen, D., Vanbever, L., Vechev, M.: Config2spec: Mining
network specifications from network configurations. In: 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). pp. 969-984 (2020)
Brown, M., Fogel, A., Halperin, D., Heorhiadi, V., Mahajan, R., Millstein, T.:
Lessons from the evolution of the batfish configuration analysis tool. In: Pro-
ceedings of the ACM SIGCOMM 2023 Conference. pp. 122-135 (2023). https:
//doi.org/10.1145/3603269.3604866

Brown, M., Fogel, A., Halperin, D., Heorhiadi, V., Mahajan, R., Millstein, T.: The
open-source code of batfish (2023), https://github.com/batfish/batfish

De Moura, L., Bjgrner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337—
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Diestel, R.: Graph theory. Springer (print edition); Reinhard Diestel (eBooks)
(2024).https://doi.org/lo.1007/978—3—662—53622—3

El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Netcomplete: Practical
{Network-Wide} configuration synthesis with autocompletion. In: 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). pp.
579-594 (2018)

Fang, X., Ding, F., Huang, B., Wang, Z., Han, G., Yang, R., You, L., Xi-
ang, Q., Kong, L., Liu, Y., et al.: Network can help check itself: Accelerating
smt-based network configuration verification using network domain knowledge.
IEEE/International Conference on Computer (2023). https://doi.org/10.1109/
infocomb2122.2024.10621215

Feamster, N., Rexford, J.: Network-wide prediction of bgp routes. IEEE/ACM
Transactions on Networking 15(2), 253-266 (2007). https://doi.org/10.1109/
tnet.2007.892876

Feamster, N., Rexford, J.: Network-wide prediction of bgp routes. IEEE/ACM
Transactions on Networking 15(2), 253-266 (2007). https://doi.org/10.1109/
tnet.2007.892876

https://doi.org/10.23919/ifipnetworking55013.2022.9829765
https://doi.org/10.23919/ifipnetworking55013.2022.9829765
https://doi.org/10.23919/ifipnetworking55013.2022.9829765
https://doi.org/10.23919/ifipnetworking55013.2022.9829765
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/3591222
https://doi.org/10.1145/3591222
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://github.com/batfish/batfish
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1109/infocom52122.2024.10621215
https://doi.org/10.1109/infocom52122.2024.10621215
https://doi.org/10.1109/infocom52122.2024.10621215
https://doi.org/10.1109/infocom52122.2024.10621215
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876
https://doi.org/10.1109/tnet.2007.892876

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 17

Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan,
R., Millstein, T.: A general approach to network configuration analysis. In: 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). pp. 469-483 (2015)

Gao, L., Rexford, J.: Stable internet routing without global coordination.
IEEE/ACM Transactions on networking 9(6), 681-692 (2001). https://doi.org/
10.1145/345063.339426

Giannarakis, N., Beckett, R., Mahajan, R., Walker, D.: Efficient verification of
network fault tolerance via counterexample-guided refinement. In: Computer Aided
Verification: 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part II 31. pp. 305-323. Springer (2019). https:
//doi.org/10.1007/978-3-030-25543-5_18

Harary, F.: Graph theory (on Demand Printing of 02787). CRC Press (2018).
https://doi.org/10.1201/9780429493768

Kang, N., Zhang, P., Li, H., Wen, S., Ji, C., Yang, Y.: Network specification mining
with high fidelity and scalability. In: 2023 IEEE 31st International Conference on
Network Protocols (ICNP). pp. 1-11. IEEE (2023). https://doi.org/10.1109/
icnpb9255.2023.10355598

Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE Journal on Selected Areas in Communications 29(9), 1765—
1775 (2011). https://doi.org/10.1109/jsac.2011.111002

Liu, Y., Subotic, P., Letier, E., Mechtaev, S., Roychoudhury, A.: Efficient
smt-based network fault tolerance verification. In: International Symposium
on Formal Methods. pp. 92-100. Springer (2023). https://doi.org/10.1007/
978-3-031-27481-7_7

Lopes, N.P., Rybalchenko, A.: Fast bgp simulation of large datacenters. In: Veri-
fication, Model Checking, and Abstract Interpretation: 20th International Confer-
ence, VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings 20. pp.
386-408. Springer (2019). https://doi.org/10.1007/978-3-030-11245-5_18
Moss, S.: Microsoft azure outage blamed on wan router ip
change (2023), https://www.datacenterdynamics.com/en/news/
microsoft-azure-outage-blamed-on-wan-router-ip-change/

Raghunathan, D., Beckett, R., Gupta, A., Walker, D.: Acorn: Network control
plane abstraction using route nondeterminism. In: FMCAD. pp. 261-272 (2022).
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_33

Rekhter, Y., Li, T., Hares, S.: Rfc 4271: A border gateway protocol 4 (bgp-4)
(2006). https://doi.org/10.17487/rfc4271

Shao, X., Chen, Z., Holcomb, D., Gao, L.: Accelerating bgp configuration verifica-
tion through reducing cycles in smt constraints. IEEE/ACM Transactions on Net-
working 30(6), 2493-2504 (2022). https://doi.org/10.1109/tnet.2022.3176267
Sharwood, S.: Facebook rendered spineless by buggy audit code that missed catas-
trophic network config error (2021), https://www.theregister.com/2021/10/06/
facebook_outage_explained_in_detail/

Sobrinho, J.L.: An algebraic theory of dynamic network routing. IEEE/ACM
Transactions on Networking 13(5), 1160-1173 (2005). https://doi.org/10.1109/
tnet.2005.857111

Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., Vechev, M.: Probabilistic verifi-
cation of network configurations. In: Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer communication. pp. 750-764
(2020). https://doi.org/10.1145/3387514.3405900

https://doi.org/10.1145/345063.339426
https://doi.org/10.1145/345063.339426
https://doi.org/10.1145/345063.339426
https://doi.org/10.1145/345063.339426
https://doi.org/10.1007/978-3-030-25543-5_18
https://doi.org/10.1007/978-3-030-25543-5_18
https://doi.org/10.1007/978-3-030-25543-5_18
https://doi.org/10.1007/978-3-030-25543-5_18
https://doi.org/10.1201/9780429493768
https://doi.org/10.1201/9780429493768
https://doi.org/10.1109/icnp59255.2023.10355598
https://doi.org/10.1109/icnp59255.2023.10355598
https://doi.org/10.1109/icnp59255.2023.10355598
https://doi.org/10.1109/icnp59255.2023.10355598
https://doi.org/10.1109/jsac.2011.111002
https://doi.org/10.1109/jsac.2011.111002
https://doi.org/10.1007/978-3-031-27481-7_7
https://doi.org/10.1007/978-3-031-27481-7_7
https://doi.org/10.1007/978-3-031-27481-7_7
https://doi.org/10.1007/978-3-031-27481-7_7
https://doi.org/10.1007/978-3-030-11245-5_18
https://doi.org/10.1007/978-3-030-11245-5_18
https://www.datacenterdynamics.com/en/news/microsoft-azure-outage-blamed-on-wan-router-ip-change/
https://www.datacenterdynamics.com/en/news/microsoft-azure-outage-blamed-on-wan-router-ip-change/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_33
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_33
https://doi.org/10.17487/rfc4271
https://doi.org/10.17487/rfc4271
https://doi.org/10.1109/tnet.2022.3176267
https://doi.org/10.1109/tnet.2022.3176267
https://www.theregister.com/2021/10/06/facebook_outage_explained_in_detail/
https://www.theregister.com/2021/10/06/facebook_outage_explained_in_detail/
https://doi.org/10.1109/tnet.2005.857111
https://doi.org/10.1109/tnet.2005.857111
https://doi.org/10.1109/tnet.2005.857111
https://doi.org/10.1109/tnet.2005.857111
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3387514.3405900

18

30.

31.

32.

33.

34.

35.

36.

37.

N. Kang et al.

Tang, A., Beckett, R., Benaloh, S., Jayaraman, K., Patil, T., Millstein, T., Vargh-
ese, G.: Lightyear: Using modularity to scale bgp control plane verification. In:
Proceedings of the ACM SIGCOMM 2023 Conference. pp. 94-107 (2023). https:
//doi.org/10.1145/3603269.3604842

Tarjan, R.: Depth-first search and linear graph algorithms. SIAM journal on com-
puting 1(2), 146-160 (1972). https://doi.org/10.1109/swat.1971.10

Thijm, T.A., Beckett, R., Gupta, A., Walker, D.: Kirigami, the verifiable art of
network cutting. IEEE/ACM Transactions on Networking (2024). https://doi.
org/10.1109/tnet.2024.3360371

Tom Strickx, J.H.: Cloudflare outage on june 21, 2022 (2022), https://blog.
cloudflare.com/cloudflare-outage-on- june-21-2022/

West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle
River (2001)

Yang, R., Gao, R., Zhang, C.: A new algebraic approach to finding all simple
paths and cycles in undirected graphs. In: 2015 IEEE International Conference on
Information and Automation. pp. 1887-1892. IEEE (2015). https://doi.org/10.
1109/icinfa.2015.7279596

Zhang, P., Gember-Jacobson, A., Zuo, Y., Huang, Y., Liu, X., Li, H.: Differential
network analysis. In: 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). pp. 601-615 (2022)

Zhang, P., Wang, D., Gember-Jacobson, A.: Symbolic router execution. In: Pro-
ceedings of the ACM SIGCOMM 2022 Conference. pp. 336-349 (2022). https:
//doi.org/10.1145/3544216.3544264

https://doi.org/10.1145/3603269.3604842
https://doi.org/10.1145/3603269.3604842
https://doi.org/10.1145/3603269.3604842
https://doi.org/10.1145/3603269.3604842
https://doi.org/10.1109/swat.1971.10
https://doi.org/10.1109/swat.1971.10
https://doi.org/10.1109/tnet.2024.3360371
https://doi.org/10.1109/tnet.2024.3360371
https://doi.org/10.1109/tnet.2024.3360371
https://doi.org/10.1109/tnet.2024.3360371
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://doi.org/10.1109/icinfa.2015.7279596
https://doi.org/10.1109/icinfa.2015.7279596
https://doi.org/10.1109/icinfa.2015.7279596
https://doi.org/10.1109/icinfa.2015.7279596
https://doi.org/10.1145/3544216.3544264
https://doi.org/10.1145/3544216.3544264
https://doi.org/10.1145/3544216.3544264
https://doi.org/10.1145/3544216.3544264

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 19

A Microbenchmark

Impact of each technique. In this part, we study the contribution of the
three techniques of VeriBoost, Link Pruning, Link Compression and Property
Trimming. Fig. 7 shows the speedup of total verification as Link Pruning, Link
Compression and Property Trimming are progressively applied in SMT-based
method. It is evident that both Link Pruning and Link Compression contribute
to pruning effects that become more significant as the tolerance increases.

50 ¢ Property Trimming
j‘a - Link Pruning
g ?d Link Compression
o] O E
g 25
a 20 |
» 15
10 | E
8385%55558555‘5
% \\{’\\4)\\43’\\4\\{)’\\&4\\{ YN

Ren Armn Bic Esn Lat Col Clt Usc Cog
Fig. 7. Speedup in the total verification of VeriBoost applied to Minesweeper for
BGP datasets when progressively applying Property Trimming, Link Pruning, and
Link Compression.

Overhead. Fig. 8 displays the time for Link Pruning, Link Compression and
Property Trimming for 260 WAN datasets. The total time of the three steps
is under 510ms, all within the millisecond range. Therefore, the time for all
three steps can be considered negligible compared to the seconds-level time for
verification.

600 Property Trimming
8 500 2 Link Pruning
g 400 72 Link Compression
E 300
o 200
©
[
2 100 b M
< 0 dLfn\ym,,,hm,y.L.x\wm\,wmh\\rw\Ln,m,,wmrfru,‘mw\my,,hﬂ\wmx\\muWw,mmmbwmmunnMnthWm“IWW“IWWWMH ‘
0 50 100 150 200 250
The ID of datasets

Fig. 8. The average calculation time for each step: Link Pruning, Link Compres-
ston and Property Trimming.

20 N. Kang et al.

Table 2. The number of satisfied properties of Minesweeper, NetSMT, VeriBoost.

Network BGP OSPF
CWOTK | Ren Arn Bic Esn Lat Col Clt Usc Cog | Bic Col Usc

1 94 150 150 112 62 140 100 112 150 | 151 140 112
2 44 100 100 62 12 90 50 62 100 | 100 90 62
3 12 50 50 12 0 40 0 12 50 50 40 12

B Case Study

Fig. 9 shows that VeriBoost indeed identifies a large number of irrelevant and
equivalent links for Reachability(Greensboro, Atlanta, 200.4.219.0/24, 3) on the
real large topology of Uscarrier of 158 nodes. For this property, VeriBoost iden-
tifies the number of 63 irrelevant and 65 equivalent links, and the number of
symbolic links is 61.

For k = 3, verifiers only need to check C(61,3) = O(10%) failure scenarios,
instead of C(189,3) = O(10°). Finally, this property is checked for violation
when “Salisbury—Concord” and “Burlington—Durham” fail.

- \ oos
JeTN AN
\ * N \ LI
NN N
sz S « % Equivalent
=T TN, ~ .
- N . ~ e Links
, . S+
’ » " . _t
7’ . \ [
/, . ¢ ol . » " . \
r S !
J 1 .
! 8 [3 1 e~
/ N
,, P <) J N . v
. [/! e \
\ S \ ¢ Atlantap o
\ ’ ! | > o - SN
\ ‘7 ! ! o / -~
N el 1 . 1 S \
~=4 1 ! Lo
7 L4 /
. IR ’ * \
p 1 s /
[VEERY / . i \
s /Q/ o Ja— e p h | \‘
N auts 1 \
.] . H
~ ¥ 1 >4 H
l" \\ . 'l . h
L) L] -
o= 47 s 1
TAANRNY 23 o) \ F ey L
A !
o | N el . P N 14 Vo4 ’
Y ~/ ° \\ . /
» \ e /
H 7/
Greenshoro < Routing\ . NS
» e

— 0. 4 Path s Irrelevant
X Salisbury o\ A vl

. Links
Burlington®
g o Concord

Durham $ N){_;
U L -

Fig.9. An example of checking Reachability(Greensboro, Atlanta, 200.4.219.0/24, 3)
on Uscarrier, a WAN topology from the Topology Zoo. The irrelevant links and equiv-
alent links identified by VeriBoost are partially shown.

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 21

C Preliminary

Since the descriptions in Theorem 1 and 3 are not specific, such as the definition
of R (i.e., the best routes on forwarding paths and routing paths), we define the
best route, as well as forwarding paths and routing paths, in this section. The
proofs of Theorem 1 and 3 are then based on these definitions.

For the property property(vy, va, d, k), since the prefix d is directly connected
to vo, the path from vy to vy is equivalent to the path from d to vy. Therefore,
in the following discussion, we omit the parameter vy. Additionally, since our
algorithm is valid for any tolerance k, we also omit the parameter k.

Definition 10. We define several concepts related to best routes, inspired by
[5,26]. All concepts are defined under a concrete failure scenario f.

— 1 denotes the absence of routing announcements.

— aq denotes the initial routing announcement advertised by the destination d.

— N(v) returns the set of peering neighbors of device v.

— TRSy(l,L(u)) returns the routing announcement after applying the export
policies of the routing protocol on node u, transmitting over the link | =
(v,u), and applying the import policies of the routing protocol on node v. If
the link 1 fails, the result is L.

— SELf(A) returns the best routing announcement from a set of routing an-
nouncements according to the protocol decision, where A is a set of route
announcements.

— CANy(v) returns all routes announced by neighbors, i.e., { TRSy(I, Ls(u,d)) |
= (v,u),u € N}

— Ly(v,d) denotes the best routes to prefiz d on device v.

a v=d
Lf(’l)7d) = J_d CANf(’U) =0 (7)
SEL;(CANf(v)) CANy(v) # 0

Definition 11. We define some functions related to paths.

— FwbDy (v, d) returns the devices on the forwarding path from the source device
v to prefiz d under a concrete failure scenario f.

RrEf(v,d) returns the devices on the routing path from the prefix d to the
destination device v under a concrete failure scenario f. Note that the direc-
tion of the routing path is opposite to the direction of packet forwarding.
Nsp(v,d) returns the devices that don’t appear on any simple path from v to
d.

— A1P(v,d) returns the set of all trivial paths from v to d.

With Definition 10 and Definition 11, for the property property(vi,ve,d, k),
we have:

Ry(v1,v2,d) = {Ls(v,d) | v € FWD(v1,d) URTEf(v1,d)} (8)

With the above Definition 10 and 11, we also restate our two assumptions in
§4.2 as:

22 N. Kang et al.

Assumption 1. The BGP protocol converges to a unique state, i.e., for ¥Vd, if
v =wu, then L(v,d) = L(u,d).

Assumption 1 holds true in most practical scenarios as demonstrated in
[14,29]. If this assumption does not hold, the best routes of BGP may exhibit
randomness, meaning that the value of £(v,d) will be random.

Assumption 2. The network exhibits monotonicity, meaning that the weight
of a path does not decrease when prefived by a link. Specifically, suppose a is a
routing announcement. For Vl, it holds that TRSf(l,a) # SELf({a, TRS¢(l,a)}).

Assumption 2 generally holds in BGP and OSPF [22,28].

D The Proof of Theorem 1

We prove Theorem 1 with following Lemmas.

Lemma 1. For T = (V, L) and property(vi,ve,d, k), if a link | € NsP(vy,d),
then Vf = (Ly, Lp), wherel € Ly, and Yv € RTEf(v1,d), we have:

Lf(U,d) = Lf/(vvd)
, where f" = (Ly \ {l}, Lp U{l}).

Proof. We prove it by mathematical induction, which works by the number of
routing spreading hops.

Base case. d is connected routes on v. In this case, whether the link fails or
not, v still receives the routes for d through the link (v, d). According to Equation
7, we have Lf(v,d) = aq and L/ (v,d) = aq, then we have L¢(v,d) = Ly(v,d).

Step case. Suppose u is the routing last hop of v under f, which send the
best route announcement £ s(u,d) to v through link I’ = (u,v), and we denote
the best route announcement TRSf(I’, £ ¢(u,d)) on v as a. There are two cases:

Case (i) I ¢ Nsp(vy,d) (D); Because of the definition of f/, then f’ differs
from f by only the links in NsPf(v1,d), and because of @, then I’ € f'.Ly
(@); Because SEL; and SELy is based on the same best routing decision, then
SEL; = SELy (®); Because of I’ € f.Ly and @, and the same import and
export policies under f and f’, then TRSy(l',Ly(u,d)) = TRsy (I, Ls(u,d))
(@); By the induction hypothesis that i —1 holds, then £ ¢ (u,d) = £ 4/ (u,d) (®);
Because of @ and ®, then Trs¢(I', £ 4(u,d)) = TRSy (I', L4 (u, d)) (©); Because
a = Trs;(l',L¢(u,d)) and ®, then a € CAN (v) (D); Because f'.Ly only has
fewer links in NsP(v1,d) compared to f.Ly, and @, then CAN (v) C CANy(v)
(®); Because of @®, we know that a ¢ CAN;(v) \ CAN (v) (@); Because of
®®, and Assumption 1, we know that SEL;(CANf(v)) = SEL;(CANy(v)) =
SELf/(CANf/ (’U)), i.e., Lf(’l)7 d) = Lf/(v, d).

Case (i) I' € Nsp(vy,d) (D). We prove by contradiction that this case does
not occur.

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 23

Because of @, £ (v, d) is spread by a simple path path = {v-(v, u)-u-...-v-v'-
...-d} (@), i.e., the routing announcement passes through v twice; Because of
®, a is the routing announcement that arrives at v for the second time, with
path (®); Then, we let a’ be the first time the routing announcement arrives at
v, with path’ = {v-v'-...-d} (®); By comparing the two paths from @ and @,
we have a = TRS;((v,u), TRS¢(..., TRSf(...,a’)))) (®); Because a and a’ are the
routing announcements that arrive at v, then {a,a’} € CAN;(v) (®); Because
of Assumption 2, and ®®, we have a # SEL;(CAN{(v)), i.e., a isn’t the best
route on f, which contradicts the fact that a is the best route.

Lemma 2. For T = (V,L) and property(vi,va,d, k), if a link | € Nsp(vy,d),
then Vf = (Ly, Lp), where | € Ly, and Vv € FWD¢(v1,d), we have:

Lf(vvd) = Lf/(uvd)
, where f" = (Ly \ {l}, Lo U {l}).

Since the proof of Lemma 2 is similar to the proof of Lemma 2, we omit it.
With Lemma 1, Lemma 2 and Equation 8, we know Theorem 1 holds.

E The Proof of Theorem 2

Proof. Because Line 10 of Alg. 1 returns the complement set of the links in Lines
2-9, we only need to prove that Lines 2-9 include the links of all simple paths on
T. Suppose a link [appeared on a simple path pathr, but Lines 2-9 exclude it.
Let n’ be the node of v; on T, n” be the node of vy on T, and pathy be the cor-
responding path of pathr on T. Because (1) T is a tree and (2) Lines 6-9 include
all links within the PBCs from n’ to n”/, Line 6-9 excludes link only under one
condition: Line 6 excludes paths with the format {n’-...—ne-n”—...—n”-ne-...-n”
or {n’-...—n“-n‘g—...-n‘g-n”-...-n”}. In either case, traversal from n’ to n”” must pass
through n” on T twice, so pathr starting from v to vy must also pass through
v on T twice. This contradicts the fact that pathr is a simple path.

F The Proof of Theorem 3

We prove Theorem 3 with following Lemmas.

Lemma 3. For T = (V,L) and property(vi,ve,d, k), if a link | € tp, tp €
ATP(v1,d), then Vf = (Ly, L), where l ¢ Ly, and Vv, where v is the endpoint
of any trivial path, we have:

Ly(v,d) = Ly (v,d)

, where f' = (Ly \ {I'} U{l}, Lo U {I'}\ {I}), ' € tp, 1" £1.

24 N. Kang et al.

Proof. We prove it by mathematical induction. The route announcement of d
propagates through a sequence of trivial paths. Our induction works by the
number of trivial paths from d to the endpoint v.

Base case. d is connected routes on v. In this case, whether the link fails or
not, v still receive the routes for d through the link (v, d). According to Equation
7, we have L7(v,d) = aq and L/ (v,d) = a4, then we have Lr(v,d) = Ly/(v,d).

Step case. Assume that the path from d to v passes through i trivial paths,
where i # 0. We denote the set of endpoints whose path from d to v contains
exactly ¢ — 1 trivial paths as E(v). We denote the set of all trivial paths between
v and the endpoints in E(v) as T P. There are two cases:

Case (i) tp ¢ TP (D); Because of @, then tp € ATP(u,d), where u € E(v)
(@); Because the inductive hypothesis holds for the i — 1 case and @, then Yu €
E@), Lf(u,d) = L (u,d) (®); Because SEL; and SELjs are based on the same
best routing decision, then SEL; = SEL (@); Because all import and export
policies are the same under f and f’, and the states of all links from E(v) to v
are the same, e.g., failed or not, then all TRSy and TRS ¢ between u and E(v) are
the same (®). Because of @@®), then Vu € E(v), TRS;((v,...), TRSf(..., TRS ¢ (
Lf(u, d)))) is equal to TRSf/ ((1},), TRSf/ (, TRSf/(Lf/ (u, d)))), ie., CANf(U, d)
= CANy/ (v,d) (®). Because of ®®, then SEL;(CAN(v)) = SEL;(CANy/(v)) =
SELf/(CANf/ (’U)), ie., Lf(’l}, d) = Lf/(v, d).

Case (ii) tp € TP (D). Since the states of all links from d to E(v) are identi-
cal, and the import and export policies as well as the initial routing are the same
under both f and f’, we have Vu € E(v), £¢(u,d) = £ (u,d) (@), and this con-
clusion is the same as in Case (7), but it relies on Assumption 1 rather than the in-
ductive hypothesis; Because v is one end points of tp, we then let u be the another
end points of tp, and a' = TRSf (..., TRS (I, ..., TRS{ (L s (u,d))) (@), and o'’ =
TRS (..., TRS /(I ..., TRS (£ ¢ (u, d))) (@); With the same method in Case (i),
we could prove that CANy(v,d)\a! = CaNf(v,d)\a’ (®); Because | € f.Lop
and @, then a! =1 (®); Because I’ € f'.Lp and @, then a! =1 (@); Because
of ®®@, SEL;(CANf(v,d)) = SEL;(CANf(v,d)\a!) = SEL;(CAN (v, d)\a") =
SEL (CANf: (v, d)\a") = SEL{ (CAN (v, d)), ie., Lf(v,d) = L (v, d).

Lemma 4. For T = (V,L) and property(vy, va,d, k), if a link | € tp and tp €
ATP(v1,d), then Vf = (Ly, Lp), where | ¢ Ly, and Yv € RTE;(v1,d), we have:

Li(v,d) =Ly (v,d)

, where f' = (Ly \ {I'}U{i}, Lo U{U}\{1}),l' € tp,l' #£1.
Proof. We prove this by leveraging Lemma 3. Suppose u is the endpoint of the
last trivial path ¢p’ of v under f, which sends the best route announcement
L ;(u) to v through tp’. We now prove that the node u’ belongs to the part of
RTE(v1,d) from u to v that satisfies L(u',d) = L (v, d). Similarly, the node
u’ belongs to the part of RTE;(v1,d) from d to u can be proven to satisfy this
in the same manner.

Case (i) tp = tp’. We prove that this situation does not occur. Since [€ tp,
it follows that [€ tp’. Given that [€ f.Lp, tp’ is blocked. This contradicts the
assumption that tp’ sends the best route announcement.

Fast SMT-Based Fault Tolerance Verification for Wide Area Networks 25

Case (i) tp # tp'. According to Lemma 3, we know that £ ;(u,d) = £ (u, d)
and L¢(v,d) = L/ (v,d), i.e., the best routes for d at both ends of a trivial path
are the same. Moreover, for u’ € tp’, because u’ can only receive the route from
either u or v, we simply prove that £;(u/,d) = L (v, d) with the method as in
Lemma 3 Case (i).

Lemma 5. For T = (V, L) and property(vi,va,d, k), if a link |l € tp and tp €
AtrP(v1,d), thenVf = (Ly, Lp), where l ¢ Ly, and Vv € FWDy(vq,d), we have:

Lf(vv d) = Lf/(v’d)
Cwhere = (L \ {IF U {1}, Lo UM\ 1), € tp, 1! 1.

Since the proof of Lemma 5 is similar to the proof of Lemma 2, we omit it.
With Lemma 4, 5 and Equation 8, Theorem 1 holds.

	 Fast SMT-Based Fault Tolerance Verification for Wide Area Networks

