S2: A Distributed Configuration Verifier for Hyper–Scale Networks

<u>Dan Wang</u>, Peng Zhang, Wenbing Sun, Wenkai Li, Xing Feng, Hao Li

Jaiwei Chen, Weirong Jiang, Yongping Tang

Networks are achieving hyper-scale

✓ Each DCN is getting larger

Networks are achieving hyper-scale

✓ New DCNs are built continuously

Networks are achieving hyper-scale

!!! >10K switches !!!

Hyper-scale networks are not error-prone?

✓ Well-structured?

✓ Standard configuration with templates?

>10K switches

Hyper-scale networks are pot error-prone!

√ Well-structured? -> heterogenous

✓ Standard configuration with templates?

>10K switches

Hyper-scale networks are pot error-prone!

✓ Well-structured? -> heterogenous

✓ Standard configuration with templates?

-> non-standard

>10K switches

Hyper-scale networks are pot error-prone!

✓ Well-structured? -> heterogenous

 ✓ Standard configuration with templates? -> non-standard

> Route aggregation

- > ECMP with different max path
- > AS Path overwrite
- > Dual stack (IPv4 + IPv6)
- > Vendor specific behavior -> 30% incidents

>10K switches

Can we verify hyper-scale networks (>10K switches) within a reasonable amount of time (2h)?

Control Plane Verifiers

Batfish [SIGCOMM'23] FastPlane [VMCAI'19] ShapeShifter [POPL'20] Bonsai [SIGCOMM'18]

Simulation-based CPVs

ARC [SIGCOMM'16] Minesweeper [SIGCOMM'17] Tiramisu [NSDI'20]

Analysis-based CPVs

Lightyear [SIGCOMM'23] Timepiece [PLDI'23] Kirigami [ToN'24]

Modular CPVs

Control Plane Verifiers

Batfish [SIGCOMM'23] FastPlane [VMCAI'19] ShapeShifter [POPL'20] Bonsai [SIGCOMM'18]

Simulation-based CPVs

Limited support for network features

ARC [SIGCOMM'16] Minesweeper [SIGCOMM'17] Tiramisu [NSDI'20]

Analysis-based CPVs

Lightyear [SIGCOMM'23] Timepiece [PLDI'23] Kirigami [ToN'24]

Modular CPVs

- 1. Limited support for properties
- 2. Require much effort from users

We choose to simulate

Batfish [SIGCOMM'23] FastPlane [VMCAI'19] ShapeShifter [POPL'20] Bonsai [SIGCOMM'18]

Existing simulators "scale up"

Batfish [SIGCOMM'23] -> Parallelism
FastPlane [VMCAI'19] -> BGP scheduling
ShapeShifter [POPL'20] -> Abstract Interpretation
Bonsai [SIGCOMM'18] -> Compression

Existing simulators "scale up"

```
Batfish [SIGCOMM'23] -> Parallelism -> #switches >> #cores
FastPlane [VMCAI'19] -> BGP scheduling -> Require monotonicity
ShapeShifter [POPL'20] -> Abstract Interpretation -> loose precision
Bonsai [SIGCOMM'18] -> Compression -> per-prefix compression
```


Existing simulators "scale up"

Batfish [SIGCOMM'23] -> Parallelism -> #switches >> #cores FastPlane [VMCAI'19] -> BGP scheduling -> Require monotonicity ShapeShifter [POPL'20] -> Abstract Interpretation -> loose precision Bonsai [SIGCOMM'18] -> Compression -> per-prefix compression

None reported scaling to >10K switches

Why State-of-the-Art simulators cannot scale to hyper-scale networks?

Simulating hyper-scale networks is challenging

✓ Memory intensive

FatTreeK, $O(K^5)$ number of routes

FatTree60, around 400 million routes Real DCN, around 200 (300) million IPv4 (IPv6) routes

- > Control Plane: #switches >> #cores
- > <u>Data Plane:</u> non-parallel BDD

Simulate with Batfish (15 cores, 100GM memory)

We choose to "scale-out"

We choose to "decouple"

the distributed framework from the switch model

We propose \$2

Scalable Simulation-based Verifier

Architecture of S2

Architecture of S2

Architecture of S2

Step1: Parse vendor-specific configuration files into vendor-independent models

Step2: Partition the graph into n segments, one for each worker

Step3: Distributed Control Plane Simulation

Step1: Parse vendor-specific configuration files into vendor-independent models

Step2: Partition the graph into n segments, one for each worker

Step3: Distributed Control Plane Simulation

Step1: Parse vendor-specific configuration files into vendor-independent models

Step2: Partition the graph into n segments, one for each worker

Step3: Distributed Control Plane Simulation

Step1: Parse vendor-specific configuration files into vendor-independent models

Step2: Partition the graph into n segments, one for each worker

Step3: Distributed Control Plane Simulation

How to partition the network?

- 1. Balanced worker workloads
- 2. Minimal cross-worker communication cost

How to partition the network?

- 1. Balanced worker workloads
- 2. Minimal cross-worker communication cost

Number of routes

Route exchange between SW1 and SW2

Distributed Control Plane Simulation

Route exchange between SW2 and SW3

Distributed Control Plane Simulation

Route exchange between SW2 and SW3

Optimization: prefix sharding

Data Plane Verification

How to perform data plane verification?

Gather RIBs onto one worker?

Perform centralized packet forwarding?

Gather routes and perform centralized DPV?

- 1. Heavy memory usage
- 2. Sequential packet forwarding

Perform distributed packet forwarding!

- 1. Relatively light memory usage
- 2. Parallel packet forwarding

All packets reachable from SW1 to SW3

All packets reachable from SW1 to SW3

- 1. Reachability
- 2. Waypoint
- 3. Multi-path consistency
- 4. Loop/Blackhole

• • • • •

Evaluations

Implementation and Evaluation Setup

- > We implement S2 on top of Batfish ~12K LOC of Java code, only ~500 LOC modification to Batfish
- > We use both synthetic FatTrees (BGP, ECMP) and a real DCN (16k switches)
- > We use five physical Linux servers: 64-core, 500GB RAM
- > We divide each physical Linux server into four logical servers: 15-core, 100GM RAM

Results for synthetic FatTrees

- > S2 (16 worker) is the only one that scales to FT90 (11K nodes)
- > S2 scales out with more workers

Results for the real DCN

- > The real DCN contains ~16K switches, producing ~200M IPv4 routes
- > S2 finishes with ~16 minutes and ~25GB memory

Summary

- ✓ Existing verifiers choose to "scale-up"
- ✓ We designed S2, "scale-out" on a distributed architecture
- \checkmark We built S2 on top of Batfish, it scales to networks with >10K switches within 2 hours
- ✓ We will open-source S2 soon

Happy to take your questions