ACM SIGCOMM 2025, Coimbra, Portugal, September 8 - 11, 2025

S2: A Distributed Configuration
Veritier for Hyper-Scale Networks

Dan Wang, Peng Zhang, Jaiwei Chen,
z| Wenbing Sun, Wenkai Li, I I l Weirong Jiang,
. Xing Feng, Hao Li Yongping Tang

NetVerify | ANTS | Xi‘an Jiaotong University, SDN | ByteDance



Networks are achieving hyper-scale

</ Each DCN is getting larger

Background

' Backbone WAN

NSl=l=




Networks are achieving hyper-scale

<V New DCNs are built continuously

00
00

Il
10000

Backbone WAN

000
00

Background

T000]
10001




Networks are achieving hyper-scale

I >10K switches !l

I
(nnng

Backbone WAN

qanng
qnnng




Hyper-scale networks are not error-prone?

< Well-structured?

I
(nnng

</ Standard configuration with templates?

' Backbone WAN —1=1=

qanng
qnnng

>10K switches

Background



Hyper-scale networks are et error-prone!

</ Well-structured? -> heterogenous

</ Standard configuration with templates?

Background

qonn
qonn

— ackbone WAN
>10K switches

Il
Il

\: :I 1L 1




Hyper-scale networks are et error-prone!

</ Well-structured? -> heterogenous

I
(nnng

</ Standard configuration with templates?
-> non-standard

' Backbone WAN —1=1=

qanng
qnnng

>10K switches

Background



Hyper-scale networks are et error-prone!

< Well-structured? -> heterogenous

</ Standard configuration with templates?
-> non-standard

qonn
qonn

il
10001

> Route aggregation

> ECMP with different max path

> AS_Path overwrite

> Dual stack (IPv4 + IPv6)

> Vendor specific behavior -> 30% incidents

Background

Backbone WAN

qonn
qonn

>10K switches

Il
Il

\: :I 1L 1




Can we verify hyper-scale networks (>10K
switches) within a reasonable amount of time (2h)?

Background -> SOTA 9



Control Plane Verifiers

Batfish [SIGCOMM’23]

FastPlane [VMCAI'19] ARC [SIGCOMM’16] Lightyear [SIGCOMM’23]
ShapeShifter [POPL’20] Minesweeper [SIGCOMM’17] Timepiece [PLDI'23]

Bonsai [SIGCOMM’18] Tiramisu [NSDI’20] Kirigami [ToN'24]
Simulation-based CPVs Analysis-based CPVs Modular CPVs

& -

Background -> SOTA 10



Control Plane Verifiers

Limited support for network features

Batfish [SIGCOMM’23]
FastPlane [VMCAI'19] ARC [SIGCOMM’16] Lightyear [SIGCOMM’23]
ShapeShifter [POPL’20] Minesweeper [SIGCOMM’17] Timepiece [PLDI'23]
Bonsai [SIGCOMM’18] Tiramisu [NSDI’20] Kirigami [ToN'24]
Simulation-based CPVs Analysis-based CPVs Modular CPVs
\ / J

!
1. Limited support for properties

2. Require much effort from users

&

Background -> SOTA 11



We choose to simulate

Batfish [SIGCOMM’23]
FastPlane [VMCAI'19]
ShapeShifter [POPL’20]
Bonsai [SIGCOMM’18]

Simulation-based CPVs

\

& -

Background -> SOTA

12



Existing simulators “scale up”

Batfish [SIGCOMM’23] -> Parallelism

FastPlane [VMCAI'19] -> BGP scheduling
ShapeShifter [POPL’20] -> Abstract Interpretation

Bonsai [SIGCOMM’18] -> Compression

Simulation-based CPVs

& -

Background -> SOTA

13



Existing simulators “scale up”

Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

FastPlane [VMCAI'19] -> BGP scheduling -> Require monotonicity
ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision

Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression

Simulation-based CPVs

& -

Background -> SOTA

14



Existing simulators “scale up”

Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

FastPlane [VMCAI'19] -> BGP scheduling -> Require monotonicity None reported scaling
ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision C to >10K switches

Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression

Simulation-based CPVs

& -

Background -> SOTA 15



Why State-of-the-Art simulators
cannot scale to hyper-scale networks?

Background -> SOTA

16



Simulating hyper-scale networks is challenging

</ Memory intfensive

FatTreeK, O(K~5) number of routes o Memory out (100GB)

10 foooe R
</ Compute intensive and lacks parallelism

1
> Control Plane: #switches >> #cores (2K mades) (3K mades)  (1ekmodocy
> M non—prG”el BDD Simulate with Batfish (15 cores, 100GM memory)

Background -> SOTA 17



We choose to “scale-out”

/ Distributed Simulation-based Verifier /
|

&
&
&
&

Background -> SOTA -> Design Choices

18



We choose to “decouple”
the distributed framework from the switch model

/ Distributed Simulation-based Verifier
|

N

NP

Background -> SOTA -> Design Choices

&)

8@/7 e ﬁ + f/‘,Om

> Maturity
> Continuous evolution

19



We propose SZ2

Scalable Simulation-based Verifier

Background -> SOTA -> Design Choices -> S2

20



Architecture of S2

Controller

Worker 1

Background -> SOTA -> Design Choices -> S2

Worker n

21



Architecture of S2

________________________________________________

4D

Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2

22



Architecture of S2

PN

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

C omr

________________________________________________

SwitchModel “I SwitchModel “I
) (72 ]
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2

23



Workflow of S2

Cisco

“oicen I

Juniper H

Arista H

N

(75 ]

Worker 1

Background -> SOTA -> Design Choices -> S2

/

=

Parser

N
Controller

P

{5 ]

Worker n

Stepl: Parse vendor-specific configuration
files into vendor-independent models

24



Workflow of S2
=

P

NetworkPartitioner

I~ ~I I~ 1

AU
Controller
I I
Swn‘chModeI Swn‘chModel
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2

Step2: Partition the graph into n segments,
one for each worker



Workflow of S2

PN

ControlPlaneOrchestrator (CPO)

C oﬁ?{?lgr

A

SwitchModel III SwitchModel III
FIB FIB
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2

Step3: Distributed Control Plane Simulation

26



Workflow of S2

PN

~1 1 ve 1

DataPlaneOrchestrator (DPO)

C oﬁf‘;lgr

—

FIB
Worker 1

Background -> SOTA -> Design Choices -> S2

N

—

FIB

Worker n

Step4: Distributed Data Plane Verification

27



Network Partition

Background -> SOTA -> Design Choices -> S2 -> Partition

28



Network Partition

Background -> SOTA -> Design Choices -> S2 -> Partition

29



Network Partition

Background -> SOTA -> Design Choices -> S2 -> Partition

How to partition the network?

1. Balanced worker workloads

2. Minimal cross-worker communication cost

30



Network Partition

Background -> SOTA -> Design Choices -> S2 -> Partition

How to partition the network?

1. Balanced worker workloads

2. Minimal cross-worker communication cost
ﬂ Number of routes

Graph partitioning

31



Distributed Control Plane Simulation

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS

32



Distributed Control Plane Simulation

Fixpoint ()
,//\\\ converged <- false;
Parser NetworkPartitioner while !converged
ControlPlaneOrchestrator (CPO) Converged <- true;
DataPlaneOrchestrator (DPO) HPES T o WORKEES G
, converged <- w.Execute () & converged;
Come’r
SwitchModel “I SwitchModel “I
FIB ‘ FIB |M
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS



Distributed Control Plane Simulation

PN

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

C omr

________________________________________________

— — I for node in w.nodes do
Sw:fchMojel lll ,,,,,, Sw:TchM(_),:del Ill for neighbor in node.neighbors do
___________________________________ F routes <- neighbor.Exchange (node
FIB FIB g ge ( )
node.updateRIB (routes)
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS 34



Distributed Control Plane Simulation

Swi1 Swz SW3
(Real) (Real) (Real)
RIB RIB RIB
, Exchange ] , Exchange ] , Exchange ]

N

ADI9PIS

N

Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS



Distributed Control Plane Simulation

Swi Sw2
(Real) (Real)
RIB RIB

:Excgange]«—»

: Ech;nge ]

SW3s
(Real)

IB

N

ADI9PIS

X
Worker 1

:EXChange]

Worker n

Route exchange between SW1 and SW2

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS

36



Distributed Control Plane Simulation

Swi
(Real)

Sw2
(Real)

IB

RIB

:Exchange]

rExchangeJ1—+

logical

N

ADI9PIS

X
Worker 1

SW3s
(Real)

IB

:EXChange]

Worker n

Route exchange between SW2 and SW3

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS

37



Distributed Control Plane Simulation

Swi1 SwW2
(Real) (Real)

RIB RIB
rExchange] rExchange]«—+

-

«»
Q
®
(@)
Q
w

Worker 1

SW3s
(Real)

RIB

: Excl;'ange ]

Worker n

Route exchange between SW2 and SW3

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS

38



Optimization: prefix sharding

PN

@

ControlPlaneOrchestrator (CPO) J- Simulate for one

—_— shard a time
Coﬁf{;lgr

A

SwitchModel III SwitchModel III
FIB FIB
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS

/_\
prefix shardl prefix shard2
o

@

@ No dependency between two

prefixes in different shards

@Two prefixes with dependency

must be in the same shard

39



Data Plane Verification

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV

40



How to perform data plane verification?

RIB RIB

Worker 1 ¥ Worker m Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Gather RIBs onto one worker?

Worker 1

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV

42



Perform centralized packet forwarding?

Swi1 SW2 SW3

v
P

_’()1 (/2 (/5 (14 )5
True ] -
i NN
N\
Ny

Worker 1 |=———

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Gather routes and perform centralized DPV?

YR
6

SW3

Swi1 - [ W2 B
\ 0\ <\; R
’1 O (2 B 3 mm ‘r -\ ]
LA ]f
% BDD Node Table

Worker 1

1. Heavy memory usage
2. Sequential packet forwarding

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Perform distributed packet forwarding!

- -\/SW\'l i
’1 I \E O 3 m 14 m_ 5 6
oL /’[
% BDD Node Table BDD Node Table

Worker 1

RIB

Ll

Worker n

1. Relatively light memory usage
2. Parallel packet forwarding

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Distributed Data Plane Verification

Swi1 Swz SW3
logical
- : )5

\ o) o o)
11 - Yo . V3 V4

y
P

BDD Node Table

N

ADI9PIS

N

Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Distributed Data Plane Verification

Swi SW2 ' SW3
el — )5 = O log'_cal —05 0,
: |
' SR
BDD Node Table BDD Node 7:'able
| BDD | BDD
\ serialization deserialization

N

X
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV

47



Distributed Data Plane Verification

SwWi SwW2 SW3
>1 — 0> = Oz - 0;
~ 2
3
NBE
Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Distributed Data Plane Verification

swi1 Sw2 Sw3
11 - ' . 3 mm V2
1. Reachability
> § 2. Waypoint
N\BE 3. Multi-path consistency
Worker 1 Worker n 4. Loop/Blackhole

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV



Evaluations

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations

50



Implementation and Evaluation Setup

> We implement S2 on top of Batfish
~12K LOC of Java code, only ~500 LOC modification to Batfish

> We use both synthetic FatTrees (BGP, ECMP) and a real DCN (16k switches)
> We use five physical Linux servers: 64-core, 500GB RAM

> We divide each physical Linux server into four logical servers: 15-core, 100GM RAM

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations

51



Results for synthetic FatTrees

M Batfish " S2 (1 worker)
M Bonsai S2 (8 worker)

104 SO S S O12h)
) m
ol g
3 -
210, :
= 0
f =

10°

R, %0 760 7;0 780 7%
(a)

102

N
(@»)

—
(@)
o

I

= S2 (16 worker)
0 (100GB)

R, %0 760 7;0 76,0 7%
(b)

> S2 (16 worker) is the only one that
scales to FT9O (11K nodes)g

> S2 scales out with more workers

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations



Results for the real DCN

I Batfish S2 without Sharding
Batfish with Sharding

10% ¢

> The real DCN contains ~16K switches,
producing ~200M IPv4 routes

103 -

Time (s)

> S2 finishes with ~16 minutes and
~25GB memory

102
Total CPS DPV
(a) (b)

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations 53



Summary

< Hyper-scale networks are error prone, verifying them is compute-
and memory-intensive

</ Existing verifiers choose to “scale-up”
</ We designed S2, “scale-out” on a distributed architecture

< We built S2 on top of Batfish, it scales to networks with >10K
switches within 2 hours

< We will open-source S2 soon

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary 54



ACM SIGCOMM 2025, Coimbra, Portugal, September 8 - 11, 2025

Happy to take your questions

NetVerify | ANTS | Xi‘an Jiaotong University, SDN | ByteDance



