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Networks are achieving hyper-scale
Each DCN is getting larger
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Networks are achieving hyper-scale
New DCNs are built continuously
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Networks are achieving hyper-scale
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!!!  >10K switches  !!!
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Hyper-scale networks are not error-prone?
Well-structured?

>10K switches

Standard configuration with templates?
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Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates? 
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Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates? 
-> non-standard
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Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates? 
-> non-standard
> Route aggregation
> ECMP with different max path 
> AS_Path overwrite
> Dual stack (IPv4 + IPv6)
> Vendor specific behavior -> 30% incidents
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Can we verify hyper-scale networks (>10K 
switches) within a reasonable amount of time (2h)?
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Control Plane Verifiers
Batfish [SIGCOMM’23]

ShapeShifter [POPL’20]
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Bonsai [SIGCOMM’18]
Simulation-based CPVs

Minesweeper [SIGCOMM’17]
ARC [SIGCOMM’16]

Tiramisu [NSDI’20]
Analysis-based  CPVs

Timepiece [PLDI’23]
Lightyear [SIGCOMM’23]

Kirigami [ToN’24]
Modular CPVs
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Control Plane Verifiers
Batfish [SIGCOMM’23]
FastPlane [VMCAI’19]

ShapeShifter [POPL’20]
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Bonsai [SIGCOMM’18]
Minesweeper [SIGCOMM’17]

ARC [SIGCOMM’16]

Tiramisu [NSDI’20]
Timepiece [PLDI’23]

Lightyear [SIGCOMM’23]

Kirigami [ToN’24]

Limited support for network features

1. Limited support for properties
2. Require much effort from users

Simulation-based CPVs Analysis-based  CPVs Modular CPVs
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We choose to simulate
Batfish [SIGCOMM’23]

ShapeShifter [POPL’20]
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Bonsai [SIGCOMM’18]
Simulation-based CPVs
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Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism

ShapeShifter [POPL’20] -> Abstract Interpretation
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Bonsai [SIGCOMM’18] -> Compression
Simulation-based CPVs
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FastPlane [VMCAI’19] -> BGP scheduling



Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision
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Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression
Simulation-based CPVs
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Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision
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Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression

None reported scaling 
to >10K switches

Simulation-based CPVs
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Why State-of-the-Art simulators 
cannot scale to hyper-scale networks?
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Simulating hyper-scale networks is challenging

Memory intensive
FatTreeK, O(K^5) number of routes
FatTree60, around 400 million routes
Real DCN, around 200 (300) million IPv4 (IPv6) routes
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FT40
(2K nodes)

FT50
(3K nodes)

1

10

100
Memory out (100GB)

Real DCN
(16K nodes)

Simulate with Batfish (15 cores, 100GM memory)

Compute intensive and lacks parallelism
> Control Plane: #switches >> #cores
> Data Plane: non-parallel BDD
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We choose to “scale-out”

Distributed Simulation-based Verifier
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We choose to “decouple”

Distributed Simulation-based Verifier
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the distributed framework from the switch model

> Maturity
> Continuous evolution

Benefit from
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We propose S2
Scalable Simulation-based Verifier
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Architecture of S2
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Controller

Worker 1 Worker n

……
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Architecture of S2
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Worker 1 Worker n

sidecar

sidecar

sidecar
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Controller
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Architecture of S2
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB



Workflow of S2
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments, 
one for each worker

Step1: Parse vendor-specific configuration 
files into vendor-independent models
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Juniper
Cisco

VI

JuniperJuniper
JuniperJuniperArista
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Workflow of S2
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

SwitchModel

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments, 
one for each worker

Step1: Parse vendor-specific configuration 
files into vendor-independent models
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Workflow of S2
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sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments, 
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Workflow of S2
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments, 
one for each worker

Step1: Parse vendor-specific configuration 
files into vendor-independent models
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Network Partition
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Network Partition

29Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary



Network Partition
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How to partition the network?

2. Minimal cross-worker communication cost
1. Balanced worker workloads



Network Partition
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How to partition the network?

2. Minimal cross-worker communication cost
1. Balanced worker workloads

Graph partitioning

Number of routes



Distributed Control Plane Simulation
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Distributed Control Plane Simulation
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

converged <- false;
while !converged
  converged <- true;
  for w in workers do
    converged <- w.Execute() & converged;

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Fixpoint()
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Distributed Control Plane Simulation

34

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

for node in w.nodes do
  for neighbor in node.neighbors do
    routes <- neighbor.Exchange(node)
    node.updateRIB(routes)

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Execute()
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Distributed Control Plane Simulation
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Worker 1 Worker n

sidecar

sidecar

SW1 
(Real)

Exchange

RIB

SW2 
(Real)

Exchange

RIB

SW3’ 
(Shadow)

Exchange

SW3 
(Real)

Exchange

RIB
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Distributed Control Plane Simulation
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Worker 1 Worker n

sidecar

sidecar

SW1 
(Real)

Exchange

RIB

SW2 
(Real)

Exchange

RIB

SW3’ 
(Shadow)

Exchange

SW3 
(Real)

Exchange

RIB

Route exchange between SW1 and SW2
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Distributed Control Plane Simulation
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Worker 1 Worker n

sidecar

sidecar

SW1 
(Real)

Exchange

RIB

SW2 
(Real)

Exchange

RIB

SW3’ 
(Shadow)

Exchange

SW3 
(Real)

Exchange

RIB

Route exchange between SW2 and SW3
logical
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Distributed Control Plane Simulation
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Worker 1 Worker n

sidecar

sidecar

SW1 
(Real)

Exchange

RIB

SW2 
(Real)

Exchange

RIB

SW3’ 
(Shadow)

Exchange

SW3 
(Real)

Exchange

RIB

Route exchange between SW2 and SW3

RPC
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prefix shard3

Optimization: prefix sharding
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prefix shard1 prefix shard3prefix shard2    ……Simulate for one 
shard a time

1  No dependency between two 
prefixes in different shards
2 Two prefixes with dependency 
must be in the same shard
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Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

SwitchModelSwitchModelSwitchModel

FIB FIB

SwitchModelSwitchModelSwitchModel

1

2



Data Plane Verification
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How to perform data plane verification?
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Worker 1 Worker n
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Worker m



Gather RIBs onto one worker?
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Worker 1



SW1

Perform centralized packet forwarding?
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SW2 SW3

BDD Node Table

1 2 3 4 5 6
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True

Worker 1



Gather routes and perform centralized DPV?
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SW1 SW2 SW3

BDD Node Table

1 2 3 4 5 6
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True

True

Worker 1

1. Heavy memory usage
2. Sequential packet forwarding



Perform distributed packet forwarding!
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Worker 1 Worker n

SW1 SW2 SW3

BDD Node Table BDD Node Table

1 2 3 4 5 6
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True

True 1. Relatively light memory usage
2. Parallel packet forwarding



Distributed Data Plane Verification
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Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

BDD Node Table BDD Node Table

logical
1 2 3 4 5 6
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True



Distributed Data Plane Verification
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Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

BDD Node Table BDD Node Table
BDD 
serialization

BDD 
deserialization

logical
1 2 3 4 5 6
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True



Distributed Data Plane Verification
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Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

1 2 3 4 5 6
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True

All packets reachable from SW1 to SW3



Distributed Data Plane Verification
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Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

1 2 3 4 5 6
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True

All packets reachable from SW1 to SW3

1. Reachability
2. Waypoint
3. Multi-path consistency
4. Loop/Blackhole
……



Evaluations
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Implementation and Evaluation Setup
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> We use both synthetic FatTrees (BGP, ECMP) and a real DCN (16k switches)

> We divide each physical Linux server into four logical servers: 15-core, 100GM RAM 

> We use five physical Linux servers: 64-core, 500GB RAM

> We implement S2 on top of Batfish
   ~12K LOC of Java code, only ~500 LOC modification to Batfish
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Results for synthetic FatTrees

102

103

104

FT40
FT50

FT60
FT70

FT80
FT90

TO (2h)

Batfish
Bonsai

S2 (1 worker)
S2 (8 worker)

T
im
e
(s
)

(a)

100

101

102

FT40
FT50

FT60
FT70

FT80
FT90

MO (100GB)
S2 (16 worker)

M
e
m
o
ry
(G
B
)

(b)

52

> S2 (16 worker) is the only one that 
scales to FT90 (11K nodes)

> S2 scales out with more workers
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Results for the real DCN
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> The real DCN contains ~16K switches, 
producing ~200M IPv4 routes

> S2 finishes with ~16 minutes and 
~25GB memory
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16min
25GB



Summary
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Hyper-scale networks are error prone, verifying them is compute- 
and memory-intensive

Existing verifiers choose to “scale-up”

We designed S2, “scale-out” on a distributed architecture

We built S2 on top of Batfish, it scales to networks with >10K 
switches within 2 hours 

We will open-source S2 soon
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Happy to take your questions
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