
S2: A Distributed Configuration
Verifier for Hyper-Scale Networks

Dan Wang, Peng Zhang,
Wenbing Sun, Wenkai Li,
Xing Feng, Hao Li

Jaiwei Chen,
Weirong Jiang,
Yongping Tang

NetVerify | ANTS | Xi’an Jiaotong University, SDN | ByteDance

ACM SIGCOMM 2025, Coimbra, Portugal, September 8 - 11, 2025

Networks are achieving hyper-scale
Each DCN is getting larger

2

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Networks are achieving hyper-scale
New DCNs are built continuously

3

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Networks are achieving hyper-scale

4

!!! >10K switches !!!

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Hyper-scale networks are not error-prone?
Well-structured?

>10K switches

Standard configuration with templates?

5

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates?

6

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates?
-> non-standard

7

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Hyper-scale networks are not error-prone!
Well-structured? -> heterogenous

>10K switches

Standard configuration with templates?
-> non-standard
> Route aggregation
> ECMP with different max path
> AS_Path overwrite
> Dual stack (IPv4 + IPv6)
> Vendor specific behavior -> 30% incidents

8

Backbone WAN

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Can we verify hyper-scale networks (>10K
switches) within a reasonable amount of time (2h)?

9Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Control Plane Verifiers
Batfish [SIGCOMM’23]

ShapeShifter [POPL’20]

10

Bonsai [SIGCOMM’18]
Simulation-based CPVs

Minesweeper [SIGCOMM’17]
ARC [SIGCOMM’16]

Tiramisu [NSDI’20]
Analysis-based CPVs

Timepiece [PLDI’23]
Lightyear [SIGCOMM’23]

Kirigami [ToN’24]
Modular CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

FastPlane [VMCAI’19]

Control Plane Verifiers
Batfish [SIGCOMM’23]
FastPlane [VMCAI’19]

ShapeShifter [POPL’20]

11

Bonsai [SIGCOMM’18]
Minesweeper [SIGCOMM’17]

ARC [SIGCOMM’16]

Tiramisu [NSDI’20]
Timepiece [PLDI’23]

Lightyear [SIGCOMM’23]

Kirigami [ToN’24]

Limited support for network features

1. Limited support for properties
2. Require much effort from users

Simulation-based CPVs Analysis-based CPVs Modular CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

We choose to simulate
Batfish [SIGCOMM’23]

ShapeShifter [POPL’20]

12

Bonsai [SIGCOMM’18]
Simulation-based CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

FastPlane [VMCAI’19]

Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism

ShapeShifter [POPL’20] -> Abstract Interpretation

13

Bonsai [SIGCOMM’18] -> Compression
Simulation-based CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

FastPlane [VMCAI’19] -> BGP scheduling

Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision

14

Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression
Simulation-based CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

FastPlane [VMCAI’19] -> BGP scheduling -> Require monotonicity

Existing simulators “scale up”
Batfish [SIGCOMM’23] -> Parallelism -> #switches >> #cores

ShapeShifter [POPL’20] -> Abstract Interpretation -> loose precision

15

Bonsai [SIGCOMM’18] -> Compression -> per-prefix compression

None reported scaling
to >10K switches

Simulation-based CPVs

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

FastPlane [VMCAI’19] -> BGP scheduling -> Require monotonicity

Why State-of-the-Art simulators
cannot scale to hyper-scale networks?

16Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Simulating hyper-scale networks is challenging

Memory intensive
FatTreeK, O(K^5) number of routes
FatTree60, around 400 million routes
Real DCN, around 200 (300) million IPv4 (IPv6) routes

17

FT40
(2K nodes)

FT50
(3K nodes)

1

10

100
Memory out (100GB)

Real DCN
(16K nodes)

Simulate with Batfish (15 cores, 100GM memory)

Compute intensive and lacks parallelism
> Control Plane: #switches >> #cores
> Data Plane: non-parallel BDD

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

We choose to “scale-out”

Distributed Simulation-based Verifier

18Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

We choose to “decouple”

Distributed Simulation-based Verifier

19

the distributed framework from the switch model

> Maturity
> Continuous evolution

Benefit from

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

We propose S2
Scalable Simulation-based Verifier

20Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Architecture of S2

21

Controller

Worker 1 Worker n

……

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Architecture of S2

22

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Architecture of S2

23

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Workflow of S2

24

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments,
one for each worker

Step1: Parse vendor-specific configuration
files into vendor-independent models

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Juniper
Cisco

VI

JuniperJuniper
JuniperJuniperArista

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Workflow of S2

25

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

SwitchModel

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments,
one for each worker

Step1: Parse vendor-specific configuration
files into vendor-independent models

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

VI

SwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Workflow of S2

26

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments,
one for each worker

Step1: Parse vendor-specific configuration
files into vendor-independent models

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Workflow of S2

27

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Step4: Distributed Data Plane Verification

Step3: Distributed Control Plane Simulation

Step2: Partition the graph into n segments,
one for each worker

Step1: Parse vendor-specific configuration
files into vendor-independent models

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Network Partition

28Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Network Partition

29Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Network Partition

30Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

How to partition the network?

2. Minimal cross-worker communication cost
1. Balanced worker workloads

Network Partition

31Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

How to partition the network?

2. Minimal cross-worker communication cost
1. Balanced worker workloads

Graph partitioning

Number of routes

Distributed Control Plane Simulation

32Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Distributed Control Plane Simulation

33

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

converged <- false;
while !converged
 converged <- true;
 for w in workers do
 converged <- w.Execute() & converged;

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Fixpoint()

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Distributed Control Plane Simulation

34

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

for node in w.nodes do
 for neighbor in node.neighbors do
 routes <- neighbor.Exchange(node)
 node.updateRIB(routes)

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

Execute()

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

SwitchModelSwitchModelSwitchModel

FIB

SwitchModelSwitchModelSwitchModel

FIB

Distributed Control Plane Simulation

35

Worker 1 Worker n

sidecar

sidecar

SW1
(Real)

Exchange

RIB

SW2
(Real)

Exchange

RIB

SW3’
(Shadow)

Exchange

SW3
(Real)

Exchange

RIB

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Distributed Control Plane Simulation

36

Worker 1 Worker n

sidecar

sidecar

SW1
(Real)

Exchange

RIB

SW2
(Real)

Exchange

RIB

SW3’
(Shadow)

Exchange

SW3
(Real)

Exchange

RIB

Route exchange between SW1 and SW2

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Distributed Control Plane Simulation

37

Worker 1 Worker n

sidecar

sidecar

SW1
(Real)

Exchange

RIB

SW2
(Real)

Exchange

RIB

SW3’
(Shadow)

Exchange

SW3
(Real)

Exchange

RIB

Route exchange between SW2 and SW3
logical

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Distributed Control Plane Simulation

38

Worker 1 Worker n

sidecar

sidecar

SW1
(Real)

Exchange

RIB

SW2
(Real)

Exchange

RIB

SW3’
(Shadow)

Exchange

SW3
(Real)

Exchange

RIB

Route exchange between SW2 and SW3

RPC

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

prefix shard3

Optimization: prefix sharding

39

prefix shard1 prefix shard3prefix shard2 ……Simulate for one
shard a time

1 No dependency between two
prefixes in different shards
2 Two prefixes with dependency
must be in the same shard

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Worker 1 Worker n

sidecar

sidecar

sidecar

……

Controller

Parser NetworkPartitioner
ControlPlaneOrchestrator (CPO)
DataPlaneOrchestrator (DPO)

SwitchModelSwitchModelSwitchModel

FIB FIB

SwitchModelSwitchModelSwitchModel

1

2

Data Plane Verification

40Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

How to perform data plane verification?

41

Worker 1 Worker n

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Worker m

Gather RIBs onto one worker?

42Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Worker 1

SW1

Perform centralized packet forwarding?

43

SW2 SW3

BDD Node Table

1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

Worker 1

Gather routes and perform centralized DPV?

44

SW1 SW2 SW3

BDD Node Table

1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

True

Worker 1

1. Heavy memory usage
2. Sequential packet forwarding

Perform distributed packet forwarding!

45

Worker 1 Worker n

SW1 SW2 SW3

BDD Node Table BDD Node Table

1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

True 1. Relatively light memory usage
2. Parallel packet forwarding

Distributed Data Plane Verification

46

Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

BDD Node Table BDD Node Table

logical
1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

Distributed Data Plane Verification

47

Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

BDD Node Table BDD Node Table
BDD
serialization

BDD
deserialization

logical
1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

Distributed Data Plane Verification

48

Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

All packets reachable from SW1 to SW3

Distributed Data Plane Verification

49

Worker 1 Worker n

sidecar

sidecar

SW1 SW2 SW3

1 2 3 4 5 6

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

True

All packets reachable from SW1 to SW3

1. Reachability
2. Waypoint
3. Multi-path consistency
4. Loop/Blackhole
……

Evaluations

50Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Implementation and Evaluation Setup

51

> We use both synthetic FatTrees (BGP, ECMP) and a real DCN (16k switches)

> We divide each physical Linux server into four logical servers: 15-core, 100GM RAM

> We use five physical Linux servers: 64-core, 500GB RAM

> We implement S2 on top of Batfish
 ~12K LOC of Java code, only ~500 LOC modification to Batfish

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Results for synthetic FatTrees

102

103

104

FT40
FT50

FT60
FT70

FT80
FT90

TO (2h)

Batfish
Bonsai

S2 (1 worker)
S2 (8 worker)

T
im
e
(s
)

(a)

100

101

102

FT40
FT50

FT60
FT70

FT80
FT90

MO (100GB)
S2 (16 worker)

M
e
m
o
ry
(G
B
)

(b)

52

> S2 (16 worker) is the only one that
scales to FT90 (11K nodes)

> S2 scales out with more workers

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Results for the real DCN

102

103

104

Total CPS DPV

TO (2h)

Batfish
Batfish with Sharding

Ti
m
e
(s
)

(a)

100

101

102 MO (100GB)

S2 without Sharding
S2

M
em
or
y
(G
B
)

(b)

53

> The real DCN contains ~16K switches,
producing ~200M IPv4 routes

> S2 finishes with ~16 minutes and
~25GB memory

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

16min
25GB

Summary

54

Hyper-scale networks are error prone, verifying them is compute-
and memory-intensive

Existing verifiers choose to “scale-up”

We designed S2, “scale-out” on a distributed architecture

We built S2 on top of Batfish, it scales to networks with >10K
switches within 2 hours

We will open-source S2 soon

Background -> SOTA -> Design Choices -> S2 -> Partition -> CPS -> DPV -> Evaluations -> Summary

Happy to take your questions

ACM SIGCOMM 2025, Coimbra, Portugal, September 8 - 11, 2025

NetVerify | ANTS | Xi’an Jiaotong University, SDN | ByteDance

