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ABSTRACT

Network con�guration veri�ers can proactively reason about a

network’s correctness to prevent network outages. However, even

recent e�orts have proposed algorithms to “scale up” the veri�ca-

tion to several thousand switches, these algorithms still cannot be

used for networks with more than 10K switches or 1000M routes,

which is common for large service providers. In this paper, instead

of further scaling up the veri�cation limited to a single server, we

study how to “scale out” the veri�cation using the resources of

multiple servers. To achieve this, we propose S2, a distributed veri-

�er for network con�gurations. S2 partitions the network model

and distributes the veri�cation tasks, i.e., control plane simulation

and data plane veri�cation, to run on multiple servers in parallel.

Additionally, S2 uses pre�x sharding during control plane simula-

tion to further reduce the memory footprint on each server. We

implement a prototype of S2 based on Bat�sh, the state-of-the-art

network veri�er. Based on real datacenter topologies of a large

service provider and synthetic FatTree topologies, we show that S2

can verify networks with 10K routers and 1000M routes within 2

hours.
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1 INTRODUCTION

Datacenter networks (DCNs) of large service providers can easily go

beyond tens and even hundreds of thousands of switches [15, 26, 54].

Managing such hyper-scale networks is quite challenging and error-

prone, especially considering the networks are constantly evolving

with non-standard con�gurations, and switches of di�erent ven-

dors coexist with di�erent vendors having their speci�c protocol

behaviors [21, 32].

Network veri�cation provides valuable means for operators of

such hyper-scale networks to ensure the correctness of con�gura-

tions. In the recent decade, tens of network con�guration veri�ers

have been proposed [5, 10–12, 19, 22–24, 34, 42, 52]. Unfortunately,

existing veri�ers have limited scalability, preventing their use in

hyper-scale networks. To show this, we roughly group existing ver-

i�ers into two classes, i.e., simulation-based veri�ers and analysis-

based veri�ers.

Simulation-based veri�ers, e.g., Bat�sh [19], build a model that

mimics the routing and forwarding behaviors of switches, and

based on the model, simulate the route computation and packet

forwarding process to check properties. These veri�ers can provide

relatively faithful results (routing tables, packet forwarding paths),

but have limited scalability. For example, it was reported that Bat�sh

cannot scale to 2K switches with 100GB memory [34], and the

largest size of FatTree Plankton experiments with is 2205 switches,

which cost 170GB memory [38]. Based on our synthesized FatTree

con�gurations, we found the latest Bat�sh can handle 2K switches

(§5.4). To simulate even larger networks, previous e�orts tried to

scale up the performance of simulation-based CPVs (Control Plane

Veri�ers) on a single machine by trading o� some accuracy [11, 12,

34]. For example, FastPlane [34] designed a customized algorithm

to simulate BGP for 2K switches, but needs to assume BGP route

preferences are monotone, i.e., preferences do not decrease during

route propagation, which may not hold in all networks. Moreover,

such a scale (2K switches) is still far below the 10K switches and

1000M routes.

https://doi.org/10.1145/3718958.3750516
https://doi.org/10.1145/3718958.3750516
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Analysis-based veri�ers check properties based on a control plane

model (graph [5, 22], SMT constraints [10], etc.), without simulating

the route computation. They can e�ciently reason about arbitrary

link failures, but are less faithful compared to simulation-based

veri�ers, due to the lower coverage of protocol features. Moreover,

they also face scalability problems, often limited to hundreds of

switches [10].

Therefore, none of existing con�guration veri�ers can scale to

hyper-scale networks with more than 10K switches and 1000M

routes.

This paper proposes S2, a new veri�er that can scale out the per-

formance of network veri�cation with more compute and memory

resources. At a high level, S2 partitions the network into smaller

segments, and assign them to multiple servers for distributed con-

�guration veri�cation, including simulating the routing protocols

to generate the data plane state and based on it compute the packet

forwarding behaviors for property checking. Since each server only

executes the above tasks for a subset of switches, and holds a subset

of all routes, the per-server computation and memory load can be

reduced, proportional to the number of servers.

Making the veri�cation distributed is the key to achieve scalabil-

ity, but we �nd it is still not e�cient enough to work on networks

with a huge number (say >1000M) of routes. The reason is that

switches need to hold all the routes during the route computation,

therefore the memory cost can overwhelm each single server. To

further reduce the memory cost during the distributed control plane

simulation, we propose pre�x sharding. It leverages the fact that

route computations for di�erent pre�xes are mostly independent,

and partitions the pre�xes into several shards for multi-round sim-

ulation. At each round, only routes for a subset of pre�xes reside

on the servers, and when this round ends, we write it to persistent

storage and start a new round for the next shard. We �nd pre�x

sharding is essential for S2 to scale to hyper-scale networks without

speed penalty.

However, building a distributed veri�er from scratch is hard, due

to the labor-intensive work of building accurate switch models,

which have multiple vendor-speci�c behaviors (VSBs) beyond the

RFC standards. Therefore, in order to be easy to develop, deploy, and

evolve, we choose to decouple the design of S2 from the veri�cation

logic as much as possible, and realize the veri�cation logic with

existing veri�ers built by the community. Such a decoupled design

enables us to easily adapt relatively mature veri�ers to work in the

framework of S2, and keep evolving with the collective e�ort from

the community.

We implement S2 with 12K LOC of Java for the distributed ver-

i�cation framework, and reuse the con�guration parsers, control

plane computation, data plane veri�cation of Bat�sh, with around

500 LOCmodi�cations to its original code base [18]. Using both real

and synthesized datacenter networks, we show that S2 can scale to

datacenter networks with over 10K switches with 16 logical servers.

In contrast, the vanilla Bat�sh runs out of memory for FatTrees

with more than 2K switches on a single logical server (§5).

Contributions. In summary, this paper makes the following con-

tributions:

• We motivate the need to verify hyper-scale DCNs based on

experiences from a real DCN of a large service provider,

and present a general way to make network con�guration

veri�ers scale out with more servers.

• We design and implement a prototype of S2, a distributed

control plane veri�er on top of Bat�sh [18] that can scale to

large datacenter networks with more than 10K switches and

1000M routes.

• We evaluate the performance of S2 using the con�gurations

of a real datacenter network and various sizes of synthe-

sized FatTrees [39]. The results show that S2 is the only one

that can scale to large topologies (>10K switches and 1000M

routes).

2 MOTIVATION

In this section, we �rst motivate the need and challenges to verify

hyper-scale datacenter networks, then we share the experiences

from a real hyper-scale DCN.

2.1 Hyper-Scale DCNs are Error-Prone

DCNs of large service providers can have tens and even hundreds of

thousands of switches [15, 26, 40]. Onemay think the con�gurations

of DCNs are quite standard, e.g., automatically con�gurations with

some synthesizers [13, 43], and hard to go wrong. However, our

experiences indicate that miscon�gurations are still common to

DCNs, due to the following reasons.

Vendor-Speci�c Behaviors (VSBs). The switches in a single

DCN can be from di�erent vendors, which have di�erent imple-

mentations of routing protocols and exhibit di�erent behaviors

(i.e., vendor-speci�c behaviors, VSBs). Taking the remove-private-AS

command for example, switches of some vendors will remove all pri-

vate AS numbers, while those of other vendors only remove those

private AS numbers preceding the �rst non-private one [52]. Due to

the VSBs of di�erent vendors, operators can make mistakes when

con�guring them. For example, a large service provider reports that

30% of their incidents are due to VSBs [21].

NonstandardCon�gurations.Datacenters of large service providers

often constantly evolve to meet new business demands. As a result,

multiple generations of network architecture often co-exist in their

datacenters. In addition, the DCNs may use di�erent types of policy,

generated with di�erent templates. Finally, operators may manually

change con�gurations for failure mitigation or planned updates,

making the con�guration styles diverge. The above nonstandard

con�gurations increase the complexity of the network, and make

the network error-prone.

2.2 Verifying Hyper-Scale DCNs is Challenging

Verifying hyper-scale DCNs is memory intensive. In data-

center networks, each switch (e.g., TOR) may announce multiple

pre�xes, and the announcement for most of these pre�xes will

arrive at every other switch in the network. This makes the total

number of routes quadric to the number of switches or more. Tak-

ing FatTree60 (4500 switches) for example, there are $ (4 × 10
8)

routes in total. For control plane simulation, this indicates a huge

memory cost due to the need to keep those routes in memory dur-

ing the simulation1. For data plane veri�cation, which extensively

1Since the DCN topologies are symmetric, the routes show great similarity. We tried
to leverage this similarity to maintain only one copy for each unique route. However,
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use BDD (Binary Decision Diagram), such a large number of routes

can easily over�ow the BDD node table, whose size is bounded by

$ (232) [57].

Verifying hyper-scale DCNs is compute intensive and lacks

parallelism. To achieve �exibility and scalability, modern datacen-

ter networks widely use BGP as the routing protocol. This means

that the best routes are not always those of shortest paths, and to

compute the best routes, network simulators need tomimic the rout-

ing process of each switch (applying import route policies, selecting

best routes, and applying export policies). To speedup this process,

one can let multiple switches compute their routes in parallel, as

in Bat�sh. Even though such parallel execution can speedup the

simulation process, the scalability is still limited since the number

of cores of a single server is far less than the number of switches in

a hyper-scale network. For data plane veri�cation, which needs to

simulate the forwarding of symbolic packets (encoded with BDDs)

in the network, there will be a lot of expensive BDD operations,

e.g., conjunctions, disjunctions, and negations. In addition, since

all switches share a single BDD data structure, which only allows

one operation at the same time, the parallelism is rather limited.

That is, even though theoretically di�erent switches can forward

symbolic packets in parallel, they may still be blocked due to BDD

operations.

2.3 Experiences from a Hyper-Scale DCN

We share some experiences from a large service provider’s DCN,

highlighting the importance and challenges of verifying hyper-scale

DCNs.

Scale. The DCN has 16K+ switches running BGP (i.e., eBGP). The

ASNs (Autonomous SystemNumbers) are assigned to ensure switches

at the same layer (e.g., TOR) have the same ASN, while those at dif-

ferent layers have di�erent ASNs. Each of the switches has around

10K lines of con�gurations on average. To reduce the total number

of routes, route aggregation policies are con�gured on switches at

layer 3 or above (layer 0 is the bottom layer). However, there are

still $ (2 × 108) IPv4 routes and $ (3 × 108) IPv6 routes in total. We

have only parsed the IPv4 related con�gurations for experiments,

and �nd that Bat�sh times out after 2 hours when simulating the

computation of IPv4 routes. We hypothesize that after including

IPv6 routes, the veri�cation task can be more challenging.

Routing behaviors. To prevent route drops due to repetitive ASNs,

switches are con�gured with AS_PATH overwrite policies, which

overwrite the AS_PATH of matched routes to its own ASN. In

addition to AS_PATH overwrite, there are route aggregation poli-

cies at core layers, which aggregates the VLAN interface addresses

(used for business) and loopback addresses (used for management)

received from switches of lower layers. The policies also tag the

aggregated routes with speci�c communities, which will be used

by the top-layer switches to �lter routes when exchanging routes

with each other, or the backbone switches that connect the DCN to

the outside world. Finally, since the switches of this DCN are from

5+ di�erent vendors, each with di�erent behaviors, operators may

need to con�gure the above routing policies in di�erent ways.

we found this optimization was not e�ective since each switch still needs a pointer to
the unique route, which is still a huge memory cost.

Nonstandard con�gurations. Even if all clusters in the DCN

follow the Clos topology [16], di�erent clusters may have di�erent

number of layers, with larger clusters having 5 layers, while smaller

ones only having 3 layers. The other nonstandard con�guration is

ECMP (Equal-Cost Multi-Path): even for switches at the same layer,

they may be con�gured with di�erent maximum numbers of equal-

cost paths. As a result, the number of routes on di�erent switches

can vary a lot and not quite predictable without simulation. Finally,

some switches are con�gured with a dual stack of IPv4 and IPv6,

while others only support IPv6. After talking with the operators,

we know that the architecture DCN is still evolving, with new ASN

assignment mechanisms and route aggregation policies in the near

future.

3 S2 DESIGN OVERVIEW

We have the following goals when designing S2:

• Scalability. It should be able to scale to DCNs with 10K+

switches and 1000M+ routes.

• E�ciency. It should �nish within a reasonable amount of

time, say <2 hours.

• Easiness. It should be easy to develop, deploy, and evolve.

3.1 Key Ideas

“Scale out” instead of “scale up”. To overcome the resource bot-

tleneck observed in §2.2, we partition the task of con�guration ver-

i�cation into smaller sub-tasks that can be run on multiple servers

in a distributed way, so each server has a smaller memory cost and

increased computation parallelism. S2 splits the network model

into segments, each containing a smaller number of switches, and

assigns these segments to run on multiple workers.

• For control plane simulation, the sheer amount of routes

overwhelms the memory of a network veri�er. By making

the simulation distributed, each worker only needs to hold

those routes for a subset of switches running on it. There-

fore, the per-worker memory cost can be reduced, by a ratio

proportional to the number of workers. In addition, since

each worker only needs to compute routes for a subset of

switches, the computation cost at each worker can also be

reduced.

• For data plane veri�cation, we can use di�erent BDD data

structures for symbolic packet forwarding on di�erent work-

ers (requiring serialization and deserialization when packets

are forwarded across workers). This not only reduces the

number of BDD nodes, alleviating the burden on BDD node

table, but also increases parallelism. That is, BDD operations

performed by a switch on one worker will not block the

BDD operations performed by another switch on a di�er-

ent worker, and therefore switches on di�erent workers can

forward symbolic packets in parallel.

Even though we have distributed the veri�cation tasks to mul-

tiple workers, the memory cost can still be too high for a single

worker. Especially during control plane simulation, each worker

needs to hold routes for all pre�xes in the network, leading to a

high peak memory cost. For example, when simulating FatTree80

(8000 switches), the per-worker peakmemory usage reached around

86GB, approaching the memory capacity of a single worker (100GB),



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Dan, Peng, Wenbing, Wenkai, Xing, Hao, Jiawei, Weirong, and Yongping

Figure 1: System architecture of S2.

and when simulating FatTree90 (10125 switches), all workers run

out of memory (Figure 8).

Reduce memory cost with pre�x sharding. We leverage the

observation that route computations of di�erent pre�xes are mostly

independent. That is, the computations of routes for di�erent pre-

�xes do not interfere with each other. Based on this observation,

we divide the pre�xes into multiple shards, each of which has only

a subset of all pre�xes. Then, we divide the route computation into

multiple rounds, one for each shard. When the computation for a

shard is �nished, the resultant routes are written to disk. Thus, at

any time during simulation, only routes of a single pre�x shard re-

side in each worker’s memory, thereby reducing the peak memory

cost of workers. To ensure correctness, shards should be computed

and scheduled with respect to route dependency. We show how S2

achieves this in §4.5.

Decouple the distributed framework from the switch model.

Building an accurate switch model (especially for the control plane)

is key to veri�cation, but hard and labor-intensive due to the vendor-

speci�c behaviors (VSBs) beyond the RFC standards. To be easy to

develop and evolve, we choose to decouple the design of S2 from

the veri�cation logic as much as possible, such that we can adapt

existing switch models (e.g., Bat�sh’s) to S2 and keep evolving with

little manual e�ort. Towards such a decoupling, on each worker,

S2 creates switch nodes running on a di�erent worker as shadow

nodes, which behaves exactly the same as real nodes, except that

when a method of the shadow node is called, the shadow node

relays the call to its real node via a proxy termed sidecar. In this

way, a node is fully agnostic of whether its neighbor is on the same

worker or not, allowing S2 to use existing switch models without

any modi�cation.

3.2 System Architecture

Figure 1 shows the system architecture with one Controller and

multiple Workers, which communicate through their respective

Sidecars.

Controller. The controller consists of Parser, Partitioner, and two

Orchestrators.

• The parser converts the vendor-speci�c con�guration �les

into vendor-independent models (VIs).

• The partitioner splits the network model into several seg-

ments, each of which holds a subset of switches and runs on

a dedicated worker. The partitioner should ensure balanced

workload across workers, while minimizing the inter-worker

communication costs.

• The control plane orchestrator (CPO) schedules workers to

compute routes for one ormultiple routing protocols (e.g., OSPF,

BGP). For each protocol, CPO divides the pre�xes into inde-

pendent shards and orchestrates route computation for only

one shard a time (§4.2).

• The data plane orchestrator (DPO) schedules workers to rea-

son about the forwarding behaviors based on the computed

routes, in a distributed way. It controls the general work�ow

of data plane veri�cation, i.e., �rst let all workers compute

FIBs and forwarding/ACL predicates, then let all workers ex-

ecute packet forwarding to check properties (e.g., loop-free).

Workers. Each worker consists of a set of Nodes, each correspond-

ing to a switch.

• Control plane. Eachworker wraps each local switch hosted by

it as a “real” node (solid switch model in Figure 1), and wraps

each remote switch hosted on other workers with a “shadow”

node (dotted switch model in Figure 1). The real node is the

same as o�-the-shelf switch models as in Bat�sh, while for

the shadow node, we override the functions for sending and

receiving route advertisements to use the sidecars.

• Data plane. For each “real” node running on a worker, the

worker converts the routes of the node into forwarding rules,

and then into a set of predicates (boolean formulas), each

representing a set of packets that will be processed in the

same way (forwarded to a speci�c port, permitted by port,

etc.). Then, the workers construct symbolic packets (also

boolean formulas), and forward them through the network.

At each node, the worker applies logical operations on the

symbolic packets with the predicates, and when a symbolic

packet is forwarded to a node on a di�erent worker, it uses

the sidecar to serialize and send the symbolic packet.

Sidecars. We realize communications among the controller and

workers through sidecars. Similar to sidecars in microservices, each

sidecar of S2 is a separate process running on the same server

hosting the controller or a worker, and uses remote procedure call

(RPC) to communicate with each other. Each sidecar maintains a

map from nodes to workers, so that when a node sends a route or

packet to another node hosted on a di�erent server, it forwards the

route or packet to the sidecar, which will route it to the correspond-

ing sidecars; when a sidecar receives a route or packet from other

sidecars, it can route the route or packet to the corresponding node.

3.3 Work�ow

Network Partition. Given user-provided vendor-speci�c con�gu-

ration �les, the parser �rst parses them into vendor-independent

con�gurations. After that, the Network-Partitioner splits the net-

work into several segments, and dispatches them to run on workers.

When assigning segments to workers, we inform the overall assign-

ment (i.e., the assignment of every segment) to each worker, in order

to let sidecars route requests among workers. Given assignments,

workers will set up switch models. Speci�cally, a worker will set up
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a “real” node for each switch assigned to it, and a “shadow” node

for each other switch.

Control Plane Simulation. After setting up network partitions,

the CPO will orchestrate the workers to execute a distributed, �x-

point route computation algorithm. The algorithm is round-based,

where in each round, workers let real nodes on them exchange

routes with their neighbors (either real or shadow) and update

their RIB. Bene�ts from our design, when a node exchanges routes

with its neighbors, it does not need to di�erentiate between local

(real) neighbors and remote (shadow) neighbors, since the shadow

neighbor will delay the messages to the real neighbor on a di�erent

worker through RPC handled by sidecars.

Data PlaneVeri�cation.After the control plane simulation, routes

of di�erent nodes reside on their respective workers. Instead of

gathering all routes onto a single server and utilize existing DPVs,

the DPO schedules workers to reason about the forwarding behav-

iors in a distributed way. Firstly, on each worker, “real” nodes con-

vert their RIBs into FIBs, and compute for each port the predicates

(i.e., the set of packets that will be �ltered inbound/outbound, or

forwarded to it) (i.e., port predicates [51, 57]). Then, each worker ex-

ecutes packet forwarding to check properties (e.g., loop-free). While

packet transformations among workers incur additional overhead

(i.e., BDD serialization and deserialization), we found it negligible

compared to the improved e�ciency caused by improved paral-

lelism of BDD-based packet forwarding.

4 DESIGN DETAILS

This section introduces the design details of S2.

4.1 Network Partition

Before control plane simulation, S2 partitions the network model

into multiple segments, each of which has a subset of all nodes.

Then, S2 assigns each segment to a di�erent worker for distributed

and parallel execution. The partition should optimize towards the

following two goals:

• Balancing the workload across multiple workers, in terms

of computation and memory.

• Minimizing the inter-worker communication overhead.

These two goals are general for distributed network simulation or

emulation, but other works focusmainly onminimizing inter-server

communications [21, 53, 58]. However, given our observation that

memory is the primary bottleneck, when designing the partition

algorithm, we place a higher priority on balancing workload among

workers.

Algorithm. The network partitioning problem can be formulated

as a graph partitioning problem, which is shown to be NP-hard [7].

Fortunately, some heuristic algorithms like METIS [3] yield good

results in practice. To use these algorithms, we have to specify the

load of each node and edge. We observe that the workload of each

node is closely related to the number of routes on the node. Since the

number of routes on each node is unknown before simulation, we

estimate the number of routes for each node. For standard FatTree

with : pods, every core, aggregation, and edge router is estimated

to process approximately :3/2, :3/2, and :3/4 routes, respectively.

For nonstandard networks (like our DCN) where the number of

routes is not easy to estimate, we assume uniform node loads. A

Figure 2: Illustration of the distributed control plane simula-

tion in S2.

Algorithm 1: RouteComputation(, )

Input:, : workers.

// On Controller, fix-point route computation

orchestrated by CPO.

1 2>=E4A643 ← 5 0;B4 ;

2 while ¬2>=E4A643 do

3 2>=E4A643 ← CAD4 ;

4 foreach F ∈, do

5 2>=E4A643 ← RPC(F, Execute) ∧ 2>=E4A643 ;

// On Worker, execute one route computation round.

6 Function Execute():

7 foreach =>34 ∈ F.0BB86=43_=>34B do

8 foreach =486ℎ1>A ∈ =>34.=486ℎ1>AB do

9 D?30C4B ← =486ℎ1>A .ExchangeRoutes(=>34 ) ;

10 =>34.UpdateRIB(D?30C4B ) ;

// Inside a Node, exchange route updates with a

specific neighbor.

11 Function ExchangeRoutes(=486ℎ1>A):

12 if =>34 ∈ F.0BB86=_=>34B then

// This is a real node, call the wrapped model’s

function.

13 =>34.<>34; .ExchangeRoutes(=486ℎ1>A ) ;

14 else

// This is a shadow node, make RPC to the real

node on another Worker.

15 RPC(=>34, ExchangeRoutes, =486ℎ1>A ) ;

more general and precise load estimation algorithm is left as one

of our future works.

4.2 Distributed Control Plane Simulation

In this section, we show how S2 executes control plane simulation

distributively. We also show how S2 partitions pre�xes to further

enhance the scalability of control plane simulation.

After setting up the network partition, the CPO orchestrates the

workers to simulate the control plane in a parallel and distributed

way, as shown in Algorithm 1.

First, if there are multiple routing protocols con�gured in the

network, CPO schedules each protocol in sequence, with IGP pro-

tocols (e.g., OSPF, RIP, IS-IS) before EGP (e.g., BGP) protocols. For
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Figure 3: Illustration of the distributed data plane veri�cation

in S2.

each protocol, CPO orchestrates workers to run a distributed �x-

point algorithm to compute the routes. The �x-point algorithm

runs in multiple rounds. At each round, all nodes on a worker pull

route updates from their neighbors (line 9) and merge the update

into their RIBs in parallel (line 10). This process continues until all

workers report the �x point is reached, i.e., there are no more route

updates.

Note in our design, each node� pulls route updates from all of its

neighbors in the same way, fully agnostic of whether the neighbor

is on the same worker or not. This allows S2 to avoid modifying the

logic of control plane simulation shipped with existing veri�ers like

Bat�sh. We achieved this by creating a real node for each switch

hosted on the worker, and a shadow node for each switch not hosted

on the worker. If the neighbor node is on the same worker, then

the real node’s function will be called and the function will return

the results; otherwise, the shadow node’s function is called, the

function will relay the call to the real node on another worker

through RPC. line 13 and 15 shows the details.

Figure 2 shows an example of distributed route exchange, where

'1 and '2 is hosted on,>A:4A1, '3 is hosted to,>A:4A2. When '2
on,>A:4A1 requests routes from '1, which also runs on,>A:4A1,

'2 calls the corresponding function of '1 directly ( 1 ). On the

contrary, when '2 on ,>A:4A1 requests routes from '3, which

runs on,>A:4A2, '2 calls the corresponding function of '′
3
(the

shadow node for '2) in the same way as if '3 is also on,>A:4A1
( 2 ). When the function of '′

3
is called, it relays the call to '3 on

,>A:4A2 through the the sidecar on,>A:4A1 ( 3 → 4 → 5 ).

With the above design, our distributed framework is decoupled

from the simulation logic. That is, S2 does not need to model how

switches selects the best routes, or apply route policies. but rather

override how switches pull routes from neighbors. Consequently,

when the switch model evolves, we only need to make minor ad-

justments to keep pace.

4.3 Distributed Data Plane Veri�cation

Packet.We represent packets with headers. We useH to denote

the set of all valid packet headers. Each header ℎ ∈ H is a bit vector

of length 104 +<, where 104 bits are for the 5-tuple, and< bits are

metadata used for checking path-related properties, e.g., waypoint.

Symbolic Packet. A symbolic packet is a set of packets. By as-

signing one Boolean variable for every bit of the packet header,

a symbolic packet can be represented as a Boolean formula over

those Boolean variables. That is, for every 8 ∈ [0, 104 +<), we use

18 to represent the value (i.e., 0 or 1) of the 8-th bit of the header.

BDD is the mostly adopted data structure to encode symbolic pack-

ets (e.g., [18, 23, 24, 48, 51, 55–57]). Given the huge header space

(i.e., 2104+<), state-of-the-art DPVs forward symbolic packets in-

stead of concrete packets to e�ciently analyze network forwarding

behaviors.

Pre-computing predicates. Before forwarding packets, for each

node, S2 assumes the veri�er can compute a set of predicates based

on the FIB (forwarding information base) and ACLs of the node.

There are at least two types of predicates:

• Forwarding predicate. For each port ? , it has a forwarding

predicate ? 5 F3 , representing the packets that can be for-

warded out of ? .

• ACL predicate. For each port ? , it has two predicates ?8=

and ?>DC , representing the packets that are permitted when

received at and sent out to port ? , respectively.

Forwarding symbolic packets. To check properties, the DPO

orchestrates workers to forward symbolic packets through the

network. When a switch receives a symbolic packet ?:C at port ?1,

it forwards a symbolic packet out of each of its ports ?2, with the

symbolic packet transformed as:

?:C ← ?:C ∧ ?8=
1
∧ ?

5 F3
2
∧ ?>DC

2
. (1)

The forwarding of a symbolic packet continues until one of the

following �nal states is reached.

(1) Arrive: the packet arrives at the assigned destination node

or the node that holds the destination pre�x.

(2) Exit: the packet is sent out by another edge port.

(3) Blackhole: the packet matches a rule that drops it.

(4) Loop: the packet traverses the maximum number of hops

(i.e., exceeding TTL).

Distributed forwarding of symbolic packets. During traversal,

the next hop of a symbolic packet can be on a di�erent worker

(e.g., 2 in Figure 3, from ?4 on '2 to ?5 on '3), Since the symbolic

packet encodes a set of concrete packets with Binary Decision Dia-

gram (BDD), we need to ensure these workers settle on a common

BDD encoding. There are two options.

(1) All workers share a logically centralized BDD node table.

Since BDD operations need to read or write the BDD node table,

only one switch is allowed to perform BDD operations each time.

This is similar to the centralized DPV, except we use need to syn-

chronize di�erent copies of the BDD node table.

(2) Each worker has its own BDD node table. In this case, when

symbolic packets are forwarded across di�erent workers, the work-

ers need to perform BDD serialization and deserialization (e.g., 3

and 5 in Figure 3), similar to serializing the BDD as a boolean

formula on one side, and re-encoding it with BDD on the other side.

We tried both of these options and adopted the latter one since

it achieves a higher parallelism and lower memory cost.
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• Higher parallelism. Symbolic packet forwarding incurs a lot

of BDD operations, and each operation needs to read or write

the BDD node table. On the contrary, if each worker has its

own BDD table, when a switch is performing BDD operation,

other switches not on the same worker are not blocked, and

can proceed in parallel.

• Lower memory cost. BDD node table is memory intensive

since each BDD operation may create new nodes, and when

the number of nodes exceeds the limit of BDD node table (a

threshold at most 232, due to the maximum integer value),

and may eventually saturate the node table. On the contrary,

if using multiple BDD engines, one per worker, the size of

the node table of each worker can be reduced for a lower

memory cost. The reduction of memory cost can also be

translated into speedup, due to less garbage collections or

table resizing for BDD node table (which can be quite time-

consuming).

4.4 Property Checking

S2 assumes the veri�er provides a mechanism to let users specify

queries, where a query is a 4-tuple (�,+B ,+3 ,+C ). � ⊆ H speci-

�es the checked header space, +B , +3 and +C is the set of source,

destination, and transit nodes, respectively. Given a query, S2 �rst

converts the header space � into a symbolic packet (i.e., a BDD).

Then, it injects the symbolic packet into every source node EB ∈ +B .

From those source nodes, the symbolic packets will be forwarded

through the network until all symbolic packets enter a �nal state,

as introduced in §4.3. For each destination node E3 ∈ +3 , we denote

the symbolic packets arriving at it as %E3 .

Currently, S2 supports the following 5 types of queries.

Reachability. After packet forwarding, for each destination node

E3 ∈ +3 , the symbolic packet that Arrive at E3 (i.e., ?:C ∈ %E3 ∧

?:C .5 B = Arrive) represents the set of packets that can reach this

destination node from one of the source nodes.

Waypoints. Before packet forwarding, for each switch EC ∈ +C , we

use one bit of the<-bit metadata in the packet header, say 1EC , to

indicate whether the packet has visited EC (1EC = 1) or not (1EC = 0).

We also add a “write” rule for switch EC , which set packets received

by it with 1EC = 1. When a packet ?:C reaches a �nal state, we

check whether 1EC = 1 holds, i.e., ?:C ∧ 133EC = ?:C , where 133EC
is the BDD encoding 1EC = 1.

Multi-path Consistency. This is a property �rst introduced by

Bat�sh [19], saying that tra�c along all paths from a source should

be treated the same. A violation of multi-path consistency may indi-

cate tra�c arrives at the destination along one path but encounters

a loop along the other. Suppose +B contains only one source node

EB , and a series of packets {?:C1, . . . , ?:C=} reach the �nal state. If

there exist two packets ?:C8 and ?:C 9 (8, 9 ∈ [1, =]) which overlap

(i.e., ?:C8 ∧?:C 9 ≠ ∅), but have di�erent �nal states, then we say the

multi-path consistency property is violated by packets ?:C8 ∧ ?:C 9
from node EB .

Loop/Blackhole. If there exists a packet reaching a �nal state of

Loop or Blackhole, we say the loop-free property or the blackhole-

free property is violated.

4.5 Pre�x Sharding

Sometimes, the memory of each server is still insu�cient after

network partition. Fortunately, we observe that for each protocol,

the route computations for di�erent pre�xes aremostly independent.

In such cases, we turn to pre�x sharding to further decrease the

memory usage during route computation. That is, we divide all

pre�xes to be computed into multiple independent shards, i.e., the

route computations for pre�xes in di�erent shards are independent.

Then, we can let workers compute routes for one single shard a time,

which lowers the peak memory usage during route computation.

To guarantee the correctness of pre�x sharding, we have to cap-

ture all pre�xes of a protocol. The pre�xes of a protocol can origi-

nate either from internal announcement (e.g., using BGP network

command), or through redistribution from other protocols. There-

fore, when collecting pre�xes for protocols, we �rst collect the

self-originated pre�xes for each protocol, then add the pre�xes of

protocol � to those of protocol �, if � is con�gured to redistribute

its routes to �.

To guarantee the correctness of pre�x sharding, we also have to ac-

count for dependencies among pre�xes. That is, the partition should

ensure that dependent pre�xes are always in the same shard. Pre-

�x dependency refers to the route computation of one pre�x de-

pends on those of other pre�xes. During route computation, pre�x

dependency behaves as the activation of a route depends on the

presence/absence of other routes. Taking BGP as an example, aggre-

gate routes for general pre�xes (e.g., 10.1.0.0/16) are activated only

when routes for speci�c pre�xes (e.g., 10.1.2.0/24) exist, therefore,

these pre�xes should fall in the same shard2.

Pre�x Sharding Algorithm. First, we construct a directed pre�x

dependency graph (DPDG), where each node represents a pre�x. On

a DPDG, an edge from ?A4 5 8G1 to ?A4 5 8G2 exists if and only if the

computation of ?A4 5 8G1 depends on ?A4 5 8G2. That is, either ?A4 5 8G1
is an aggregation pre�x covering the speci�c pre�x ?A4 5 8G2, or the

announcement of ?A4 5 8G1 relies on the presence or absence of

?A4 5 8G2 in the RIB [1]. Once the DPDG is constructed, we obtain

all weakly connected components (CCs) from the DPDG and dis-

tribute them into< (the expected number of) shards using a greedy

algorithm. Speci�cally, we arrange the CCs in descending order

of size (i.e., the number of pre�xes they contain), and initialize<

empty shards. Then, we iteratively assign each CC to the currently

smallest shard (i.e., the shard that has the fewest number of pre-

�xes). Note that when sorting the CCs by size, we shu�e those with

identical sizes to ensure balanced memory usage among workers.

This prevents shards from being dominated by pre�xes originating

from switches assigned to the same worker. Without the shu�ing,

we observe uneven memory usage across workers when testing S2.

5 EVALUATIONS

In this section, we show the evaluations on S2. We are interested

in answering the following questions:

(1) Can S2 verify the con�gurations of networks with 10K+

switches and 1000M+ routes?

(2) How well can S2 scale out to even larger networks by adding

more servers?

2In the worst case, if there is a route aggregation that covers all pre�xes in the network,
then we are not able to do any sharding.
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(3) How well is S2’s network partition algorithm on balancing

workloads among workers while minimizing inter-worker

communications?

(4) How do pre�x sharding and distributed DPV contribute to

the scalability of S2?

5.1 Implementation

We implement a prototype of S2 on top of Bat�sh with ∼12K LOC of

Java. Bat�sh is an excellent open-source veri�er that can simulate

the control plane of around 10 vendors, including Cisco, Juniper,

and Arista. It has been widely used and tested by researchers and

operators. Its contributors are still actively improving the accuracy

of existing switch models, as well as adding accurate switch models

for other vendors. To enjoy improved accuracy, we adapt Bat�sh

to our distributed framework in a non-intrusive way. Speci�cally,

we use sub-classing to minimize the modi�cations to the original

Bat�sh code base (see §3.2).

For the controller, we use the parser of Bat�sh to convert con-

�guration �les into VI (vendor-independent) representations. We

use METIS [3], a well-known multi-level graph partition algorithm,

to partition the network. For workers, we use the route computa-

tion model in Bat�sh [18]. Speci�cally, we extended the BGP and

OSPF classes in Java, to realize the real and shadow BGP and OSPF

nodes. In total, we modi�ed ∼500 LOC of the original Bat�sh. For

communication among the controller and workers, we use gRPC

[25]. Instead of using ProtoBuf [4], we use Java to serialize and

deserialize messages, since classes in Bat�sh are serializable with

Java without modi�cations. We expect a further improvement by

adopting ProtoBuf. For the serialization of BDD, we use the BDDIO

of JDD library [46].

5.2 Datasets and Setup

Datasets. We use both real and synthesized con�gurations.

• The real DCN con�gurations are from a large service provider.

The network has $ (16 ) nodes running BGP, producing

$ (200") IPv4 routes in total. More details about the DCN

can be found in §2.3.

• The synthesized FatTree con�gurations are constructed using

a script from ACORN [39]. We modi�ed the IP assignments

in the script so as to generate large FatTrees (e.g., FatTree90).

Using the script, we synthesized di�erent sizes of FatTrees

running BGP, where every switch has a unique AS number

and forms eBGP peer sessions with its connected switches.

The FatTrees are ECMP enabled, where every switch can

have up to 64 equal-cost paths for a pre�x.

Setup.We compare S2 with Bat�sh [18] and Bonsai [11]. For Bonsai,

it was originally implemented on top of an old version of Bat�sh,

and we adapted it to the Bat�sh version that S2 is built on. The

experiments are run on �ve physical Linux servers, each with two

32-core Intel Xeon Platinum 8336C CPUs @ 2.30GHz and 500G

memory. We use the command taskset and the JVM option -Xmx

to divide each server into four logical servers, each with 15 cores

and 100GB memory. For Bat�sh and Bonsai, we use one logical

server. For S2, we use one logical server for the controller, and up

to 16 logical servers for workers, The logical server running the
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Figure 4: (a) running time and (b) peak memory usage of

using Bat�sh, Bat�sh with pre�x sharding, S2 without pre�x

sharding, and S2 to verify the real DCN.
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Figure 5: (a) running time and (b) peak memory usage when

using Bat�sh, Bonsai, and S2 (with 1, 8, and 16 workers) to

verify di�erent sizes of FatTrees.

controller resides on a separate physical server other than those

four servers for workers.

Unless otherwise speci�ed, we check all-pair-reachability to

verify a network, and the peak memory usages reported in the

following refer to per-worker peak memory usages.

5.3 Results for Real Datacenter Network

We run both S2 and Bat�sh on the real DCN (i.e., using real con�gu-

rations on the real topology), and they output the same set of RIBs,

which consists of $ (2 × 10
8) routes in total. Figure 4 shows the

performance of Bat�sh and S2 to verify the real datacenter network.

It shows that vanilla Bat�sh runs out of memory during route com-

putation. Enabling pre�x sharding (20 shards) helps Bat�sh �nish

the veri�cation, but the memory is still approaching the limit. In

comparison, S2 can �nish the veri�cation in 16 minutes with 35GB

memory,

As shown in Figure 4(a), pre�x sharding can slow down the

control plane simulation of S2. This is because pre�x sharding has

some overhead in simulation time due to the sequential simula-

tion of multiple shards. When the memory is the bottleneck, pre�x

sharding can avoid the time-consuming garbage collections, and

thereby can speedup the simulation time. However, when the mem-

ory is su�cient, the overhead due to pre�x sharding is not paid o�,

making the simulation even slower.
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Figure 6: (a) time and (b) peak memory usage of S2 to verify

FatTree60 (4500 switches), with di�erent numbers of work-

ers.

5.4 Results for Synthesized FatTrees

We evaluate the performance of S2 (1, 8, and 16workers) on di�erent

sizes of FatTrees, and compare the results with those of Bonsai [11]

and Bat�sh. For S2, we divide the pre�xes into 20 pre�x shards for

each size of FatTrees. Bonsai compresses networks based on the

destination. If given a speci�c destination (i.e., the pre�x announced

by an edge switch), Bonsai can compress a synthesized FatTree of

an arbitrary : into only 6 nodes3. However, if given a wildcard

destination (i.e., 0.0.0.0/0), Bonsai cannot compress it. Therefore,

to check all-pair-reachability on a synthesized FatTree, we apply

Bonsai to compress the topology for each pre�x, and run Bat�sh on

the compressed topology to check the reachability for that pre�x,

in a parallel way.

As shown in Figure 5, Bat�sh can only scale to somewhere be-

tween FatTree40 (2000 switches) and FatTree50 (3125 switches),

limited by the memory resource of a single logical server. Bonsai

scales better than Bat�sh, but only to somewhere between Fat-

Tree70 (6125 switches) and FatTree80 (8000 switches), limited by

the compute resource (i.e., number of cores), rather than the mem-

ory resource, of a single logical server. This is because Bonsai is

memory e�cient by compressing FatTree into smaller size (6 nodes

for all sizes of synthesized FatTree). However, it times out on hyper-

scale FatTrees since the compression time for each destination

increases with the FatTree size, and the number of destinations far

exceeds the number of cores of a single logic server. S2 can scale to

FatTree60 (4500 switches) with 1 worker, FatTree80 (8000 switches)

with 8 workers, and FatTree90 (10125 switches) with 16 workers.

Even with a single worker, S2 scales better than Bat�sh, mainly due

to the use of pre�x sharding. Besides being more scalable, S2 is also

faster and more e�cient in memory usage.

We can see that the time and peak memory usage of S2 are

much higher for the FatTree90 (10125 switches) topology than our

DCN (Figure 4), even though they have similar number of switches.

This is because in the DCN, the operators have con�gured route

aggregations, such that the total number of routes ($ (2 × 108)) is

only 1/10 that of FatTree90 ($ (3 × 109)). In terms of the number of

routes, the DCN is closer to FatTree50 with$ (2×108) routes, but in

terms of running time and memory cost, the performance for DCN

3The 6 nodes include: (1) one edge switch for the destination, (2) one core switch, (3)
one edge switch and one aggregation switch in the same pod as the destination; (4)
one edge switch and one aggregation switch in a di�erent pod as the destination.

is closer to that of FatTree70, perhaps due to rich routing policies in

the DCN. The above comparisons indicate that the veri�cation cost

for S2 is in�uenced by three factors: (1) the number of switches, (2)

the number of routes, and (3) con�guration complexity.

5.5 Scaling Out with More Workers

We continue to evaluate how S2 can scale out with more workers.

We use FatTree60 (4500 switches), and vary the number of workers

from 1 to 16.

Figure 6 shows the result. In general, the running time and peak

memory usage decrease when we add more workers. However, they

only decrease rapidly when there are less than 8 workers. This is

because when the number of workers is relatively small compared

to the FatTree size, the computation and memory resource on each

worker is insu�cient, therefore the addition of every worker mat-

ters. In contrast, when the number of workers is relatively large

compared to the FatTree size, the computation and memory re-

source on each worker is su�cient, thus S2 only bene�ts a little

from adding more workers.

5.6 Comparison of Di�erent Network Partition

Schemes

We evaluate S2 with di�erent network partition schemes, i.e., “ran-

dom”, “expert”, and “metis”. For the random scheme, we shu�e all

switches evenly into di�erent segments. For the expert scheme, we

use di�erent strategies for di�erent topologies. Taking FatTrees

for example, the expert scheme will always assign the aggregation

and edge switches of the same pod into the same segment, and

assign the core switches evenly to di�erent segments. For the real

DCN topology, we sort all switches according to their name, and

then evenly assign them into segments. This is based on the expe-

rience that switches whose names have similar pre�xes are more

likely to be adjacent on the topology. For the metis scheme, we use

the METIS algorithm [3] to divide the topology, with the balanc-

ing of workers’ load as the primary goal and the minimization of

inter-worker communication overhead as the secondary goal.

As shown in Figure 7, the running times and memory usages

using these three schemes only di�er slightly. Especially, the most

communication-heavy partition scheme (i.e., random) only leads to

slightly worse performance, compared to the other two partition

schemes. We hypothesize that this is because the performance of

S2 is not sensitive to inter-worker communication overhead, but

mostly depends on whether the loads among workers are balanced.

We further con�rm this by testing two extreme partitions. One

scheme is to partition the network into load-imbalanced segments

(i.e., 3/4 switches of the network in one segment, while the remain-

ing switches evenly distributed to other segments), which performs

far worse than the above three schemes. Another scheme is to par-

tition the network into communication-heaviest segments (i.e., for

FatTrees, core and edge switches in some segments, while aggregate

switches on the other segments), which performs slightly worse

than the random scheme.

5.7 E�ectiveness of Pre�x Sharding

We evaluate whether pre�x sharding is necessary for verifying ex-

tremely large networks. As shown in Figure 8, for FatTrees smaller

than FatTree80 (8000 switches), S2 uses less time and memory by
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Figure 7: (a) total running time; (b) peak memory usage; (c) control plane simulation time; and (d) data plane veri�cation time

of S2 to verify di�erent networks using di�erent network partition schemes.
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Figure 8: (a) time and (b) peak memory usage to simulate

FatTree60, 70, 80, and 90 with di�erent schemes.
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Figure 9: (a) time and (b) peakmemory usage of S2 to simulate

FatTree60 (4500 switches) with di�erent number of pre�x

shards.

enabling pre�x sharding; For FatTrees larger than FatTree90 (10125

switches), enabling pre�x sharding becomes necessary to �nish the

simulation.

We continue to evaluate the scalability of pre�x sharding in

control plane simulation. We run S2 to simulate FatTree60 (4500

switches), with di�erent numbers of pre�x shards. Figure 9 shows

the result. When memory is insu�cient (i.e., <25 shards), the simu-

lation time decreases as the number of shards increases. The reason

is that as the number of pre�xes decreases in each shard, the peak

memory usage drops, avoiding many costly garbage collections.
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Figure 10: Time to verify all-pair-reachability and single-pair-

reachability on (a) FatTree40 (b) FatTree50, and (c) FatTree60

using Bat�sh and S2.

When the memory is su�cient (i.e., >25 shards), the simulation

time increases with the number of shards.

5.8 E�ectiveness of Distributed DPV

To evaluate the e�ectiveness of distributed packet forwarding in

data plane veri�cation, we compare the time to check all-pair-

reachability and single-pair-reachability on FatTree40 (2000 switches)

to FatTree60 (4500 switches) using Bat�sh and S2. Note that to eval-

uate the DPV of Bat�sh on FatTree50 and FatTree60, we enable

pre�x sharding on it to let it successfully generate FIBs.

As shown in Figure 10, S2 is faster than Bat�sh for both all-pair-

reachability and single-pair-reachability checking. The checking

time consists of two parts, i.e., the time to compute forwarding and

ACL predicates, and the time to forward packets then check all-pair

reachability or single-pair-reachability. We can see that S2 is faster

than Bat�sh in total and separate phases. Moreover, the speedup

of S2 compared to Bat�sh increases with the FatTree sizes. This

result aligns with our claim that maintaining one BDD node table

on each worker can greatly improve the BDD operation parallelism

and reduce the times of BDD node table garbage collections.

In detail, S2 speeds up the �rst phase (i.e., compute predicates)

the most (up to 10 times), since switches on di�erent workers can

compute their predicates in parallel. However, it may be counterin-

tuitive that S2 can also speed up the reachability checking so much.

This is because even checking single-pair reachability between
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Figure 11: Packet forwarding when checking reachability

from �6 to �19 on FatTree4. Numbers on the edges indicate

indices for forwarding steps.

two edge switches from two di�erent pods will trigger packet for-

warding on all workers. Take Figure 11 for example, which shows

the process of checking reachability from edge switch �6 to edge

switch �19 on four workers4. After arriving at the core switch �0,

the packet will be copied and forwarded to all other workers to ex-

haustively �nd all possible paths from �6 to �19. While Bat�sh can

only execute Step 1-6 sequentially, S2 is capable of executing steps

on di�erent workers (e.g., Step 1 and 3) in parallel, thus accelerat-

ing the reachability checking process. One may also restrict �0 to

only forward to worker4, knowing that �19 resides on it. However,

we think of �nding all available forwarding paths valuable to �nd

path-speci�c forwarding anomalies (e.g., forwarding valley such as

�6 → �4 → �0 → �8 → �10 → �9 → �3 → �17 → �19)

6 RELATED WORK

6.1 Network Emulators

[2, 21, 27, 32] run vendor-speci�c switch software in emulated envi-

ronments and generate the corresponding FIBs. However, emulating

switch images is resource-intensive, making network emulation

not scalable. Therefore, some emulators seek ways to reduce the

number of switches to emulate. Unfortunately, there is no panacea

for all networks and con�gurations; for example, the heuristic of

CrystalNet [32] to �nd a safe emulation boundary is inapplicable

to Crescent [21].

6.2 Control Plane Veri�ers (CPVs)

Simulation-based CPVs run switch models rather than the switch

images, and therefore uses much less computing and memory re-

sources. For example, network veri�ers like Bat�sh [14, 19], Plank-

ton [38], and DNA [55] execute route computation models to gen-

erate routes and forwarding rules, which can then be checked with

data plane veri�ers (DPVs) [28, 30, 31, 36, 51, 56]. ShapeShifter [12],

Hoyan [52], and SRE [57] use abstract interpretation or symbolic

execution to make the simulation more e�cient. FastPlane [34]

signi�cantly speeds up the simulation by assuming the routes are

monotone. However, none of them are reported to scale to networks

as large as 10K switches.

4Bat�sh supports both forward and backward traversing to check properties; we only
show forward traversing here for simplicity.

Analysis-based CPVs [5, 10, 22, 49] directly check properties

based on customized control plane models (e.g., graph [5, 22], SMT

constraints [10, 49], etc.), without simulating route computations

and generating the data plane. Compared with simulation-based

veri�ers, analysis-based veri�ers can e�ciently reason about arbi-

trary link failures. However, their scalability in terms of network

size is also limited [10], or they trade o� some accuracy or feature

coverage for scalability [5, 22].

Modular CPVs [6, 44, 45] verify network con�gurations by divid-

ing the network into components that can be veri�ed in isolation,

and verifying those components in parallel. Speci�cally, they ask

users to de�ne interfaces between components that describe each

component’s routing behavior, then verify whether each compo-

nent respects its interface in parallel. If so, we can conclude that the

monolithic network satis�es the property (e.g., reachability) that the

interfaces imply. Kirigami [45] proposed an architecture for modu-

lar control plane veri�cation, but restricted its interfaces to only

exact routes. Lightyear [44] supports more expressive interfaces,

but can only check that a network never receives a route (e.g., for

access control policies) — it cannot check reachability, a keen prop-

erty of interest. Timepiece [6] proposed a modular technique that

can verify a wide range of properties (including reachability) by

de�ning abstract network interfaces. However, it requires much

more work from users, i.e., de�ne interfaces that characterize the

routes each network component may generate at each time.

6.3 Data Plane Veri�cation

Data plane veri�cation has been studied for years and fruitful

[9, 28, 30, 31, 33, 51, 56], with earlier DPVs focusing on check-

ing forwarding properties (e.g., HSA [30] and Anteater [36]) and

later DPVs focusing on being faster (e.g., Veri�ow [31] and AP [51]),

incremental (e.g., APKeep [56] and Delta-net [28]), and supporting

multi-layer networks (e.g., Katra [9] and MNV [33]). However, they

are all unscalable due to their centralized architecture (i.e., limited

by the CPU and memory resources of a single machine).

Some DPVs embrace a distributed design to scale, e.g., Libra [54]

and Tulkun [50]. Libra exploits the scaling properties of MapReduce

[17], and scales to analyze a hyper-scale network with 10K switches

within a minute, using 50 servers. Note that Libra also proposes

to divide forwarding rules into shards. However, the sharding of

Libra is a pure partition of a large set of forwarding rules, without

considering dependencies among them. In contrast, we take depen-

dencies among pre�xes into consideration when sharding pre�xes

and guarantee that one pre�x is in the same shard of the pre�xes it

depends on if they exist (§4.5). Tulkun is an on-switch veri�er that

transforms data plane veri�cation into a counting problem on a

directed acyclic graph (DAG) called DPVNet. It can verify loop-free,

blackhole-free, and all-pair reachability on a real 6K-switch DC

network in 40 seconds. However, a DPVNet is essentially a DAG

that contains all topological paths between two switches, whose

construction is centralized and unscalable. Speci�cally, for a Fat-

Tree with : pods, the complexity of building a DPVNet for two

edge switches in di�erent pods is much higher than $ (:2) (i.e., the

number of shortest paths between those two edge switches).

Some DPVs exploit the characteristics of datacenters to scale,

e.g., [37] uses the symmetry and surgery of datacenters to transform
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large networks into smaller ones. It can scale to datacenters with

about 100K switches. However, instead of proactively detecting

miscon�gurations before adopting them in the network, data plane

veri�ers focus on auditing FIBs and �nding forwarding property

violations. Thus, we cannot use them although they are extremely

scalable.

7 DISCUSSION

Parallel and Distributed Strategies. Our current design runs

switches on multiple workers in parallel, while executing pre�x

shards in multiple rounds. In each round, all switches execute the

same pre�x shard. As an alternative, we can create multiple nodes

for each switch, such that di�erent nodes of the same switch can

execute di�erent pre�x shards in parallel. Such pre�x parallelism

is orthogonal to the existing switch parallelism, where multiple

switches run in parallel. Furthermore, we can distribute nodes of

the same switch across multiple workers, to reduce the running

time.

Centralized simulators like Bat�sh have already implemented

switch parallelism to speedup simulation. Speci�cally, Bat�sh lets

multiple switches compute their routes in parallel, one thread for

each switch. However, the maximum number of threads of a single

server, compared to the number of switches of a hyper-scale net-

work, is far from su�cient, making the scalability of the centralized

simulators’ parallel execution limited.

Control Plane Simulation vs. Discrete-Event Simulation.Discrete-

Event Simulator [29, 35, 41, 47] simulates packet forwarding to

evaluate the performance of network algorithms like congestion

control and packet scheduling. Recently, DONS [20] and UNISON

[8] proposed new designs like data-oriented design to make DES

more scalable. Even though DES is orthogonal to control plane

simulation, these e�orts in designing scalable DES may shed light

on scaling control plane simulation.

Correctness of Pre�x Sharding.When sharding pre�xes, we take

dependencies among pre�xes into consideration, such that a pre�x

will always be in the same shard as the pre�xes it depends on (§4.5).

However, this may miss some unforeseen dependencies that only

emerge during route computation. We argue that S2 can avoid the

false positives or false negatives due to unforeseen dependencies

with simple extensions. Speci�cally, S2 can collect pre�x depen-

dencies when computing routes, and when some unforeseen pre�x

dependencies emerge, S2 can re�ne and recompute the a�ected

shards. For example, if ?A4 5 8G1 ∈ Bℎ0A31 is found to depend on

?A4 5 8G2 ∈ Bℎ0A32 at runtime, S2 can merge these two shards and

recompute routes for the new shard (i.e., Bℎ0A31 ∪ Bℎ0A32).

Limitations. S2 assumes the network converges, after a smaller

number of rounds, to one or multiple states; otherwise, S2 cannot

terminate. When there are multiple converged state, S2 can only

converge to one such state. Finally, S2 now only supports IPv4, and

we are still working to support IPv6.

8 CONCLUSION

This paper presents S2, a distributed network con�guration veri�er

capable of scaling to networks with over 10K switches and 1000M

routes. Instead of scaling up with a single server, S2 chooses to

scale out with multiple servers. By partitioning the network into

multiple segments and run them on multiple servers, S2 observes

a reduced memory cost, lower computation load, and increased

parallelism at each server. To validate its e�ectiveness, we plugged

the models of Bat�sh into the framework of S2, with minor code

modi�cation, and showed it can verify our DCN with 16K switches

in 16 minutes, and scale to FatTrees with 10K switches and 1000M

routes with 16 workers. Our future work includes (1) supporting

the simulation of route computation for IPv6, and (2) increasing

the number of workers to further test its scalability.
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