
IEEE TRANSACTIONS ON NETWORKING 1

Network Specification Mining With High Fidelity,
Scalability, and Readability

Ning Kang , Peng Zhang , Member, IEEE, Hao Li , Member, IEEE, Sisi Wen, Chaoyang Ji,
and Yongqiang Yang

Abstract—Network specification, which describes what an
existing network is designed for, can help operators better under-
stand and manage their networks, and is a critical pre-condition
for network verification and synthesis tools to work. Existing tools
for specification mining either cannot scale to large networks, or
scale by sacrificing fidelity. Moreover, the specification contains
a huge number of low-level intents (e.g., tens of thousands of
pairwise reachability), making it hard for operators to read.
To this end, this paper presents NetMiner, which can mine
specification from network configurations, with high scalability,
fidelity, and easier to read. The key idea of NetMiner is to
faithfully simulate the network routing and forwarding behaviors
with control plane simulators and data plane verifiers, so as to
achieve high fidelity. Meanwhile, NetMiner improves the scala-
bility by identifying relevant failure scenarios, and aggregating
them to significantly reduce the number of needed simulations.
Moreover, NetMiner clusters similar low-level intents into a high-
level intent, to make the specification more concise and easier to
read. Experiments using real configurations from a large cloud
service provider and synthetic configurations show that NetMiner
can mine specification 10× faster, and reduce the number of
intents by 100×, compared to state-of-the-art tools.

Index Terms—Specification, scalability, fidelity, readability.

I. INTRODUCTION

MANAGING large-scale networks is hard, considering
the network configurations are becoming more and

more complex. To simplify the management task, network
configuration verification and synthesis have been studied in
the past decade, which can verify the correctness of existing
configurations [1], [2], [3], [4], [5], [6], [7], generate the
configurations from scratch [8], [9], [10], [11], [12], and
update the configurations based on the high-level intents [13].
One critical prerequisite of realizing the above vision is the
network specification, e.g., reachabilities between the prefixes,
waypoints that packets should traverse, and the number of
link/node failures that can be tolerated.

Received 29 December 2024; revised 16 July 2025; accepted 1 September
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor L. Fu.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62272381 and Grant 62572382. The preliminary version
was published in [DOI: 10.1109/ICNP59255.2023.10355598]. (Corresponding
author: Peng Zhang.)

Ning Kang, Peng Zhang, Hao Li, and Sisi Wen are with the Ministry of
Education (MOE) Key Laboratory for Intelligent Networks and Network
Security, Xi’an Jiaotong University, Xi’an 710049, China (e-mail:
kangning2018@foxmail.com; p-zhang@xjtu.edu.cn; hao.li@xjtu.edu.cn;
sswen0427@gmail.com).

Chaoyang Ji and Yongqiang Yang are with Huawei Cloud Com-
puting Technology Company Ltd., Beijing 100015, China (e-mail:
jichaoyang@huawei.com; yangyongqiang@huawei.com).

Digital Object Identifier 10.1109/TON.2025.3607440

Unfortunately, such a specification is usually missing or
incomplete in practice. The reason is that instead of building
a clean-slate fresh network, operators tend to construct the
network based on existing configurations. And through the
evolution over the years, it is hard for the operator to manually
compose the specifications. This motivates the problem of
network specification mining: how to automatically extract the
network specification from the existing configurations?

(i) Scalability problem: One approach to network speci-
fication mining is to simulate or emulate the control
plane with control plane simulators or emulators [14],
[15], [16], [17] to generate the Routing Information
Bases (RIBs) and Forwarding Information Bases (FIBs),
and check whether all possible candidate properties
(e.g., all-pair reachability) hold with data plane verifiers
[18], [19], [20], [21]. However, such simulation-based
approaches suffer from the scalability problem when
considering the failure tolerance: one needs to simu-
late the network a lot of times for different failures,
and each simulation is considerably costly. We break
down this problem into the following two factors. (1)
The number of simulations. To extract the complete
specification, the verifier must simulate each failure
scenario and evaluate whether all candidate properties
hold under that scenario. For a network with L links,
verifying the specification under l-link failures requires
enumerating all Cl

L combinations of failed links. In real-
world wide-area networks, L can easily reach hundreds
(from topology Zoo [22]). For instance, we observed a
production WAN topology with L = 189 links, which
leads to O(106) failure scenarios even for l = 3 (see
Fig. 14). (2) The cost of each simulation. To ensure
high fidelity, the simulation must not only model Layer-
3 routing behavior, but also account for the semantics
of lower layers such as Layer-2 (e.g., VLAN, STP)
and Layer-1 physical connectivity. This increases the
per-simulation cost. In practice, data center networks
(DCNs) often exhibit high port density and VLAN
complexity, as observed in Google’s B4 network [23],
Facebook’s network [24], and our own deployment. For
example, a typical real-world DCN may contain 100
nodes, each with 100 physical or virtual ports, and each
port configured with up to 2000 VLANs. Under such
settings, even computing the Layer-3 topology requires
O(107) operations, resulting in a time cost ranging from
a few seconds to over a hundred seconds (see Table IV).

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-3977-5093
https://orcid.org/0000-0001-7721-2675
https://orcid.org/0000-0001-8776-6911
https://orcid.org/0000-0001-9733-4346

2 IEEE TRANSACTIONS ON NETWORKING

(ii) Fidelity problem: On the other hand, mining spec-
ification with analysis-based verifiers might mitigate
the scalability problem, but sacrifice fidelity: instead
of generating the RIBs and FIBs through simulation,
the analysis-based verifiers could check the properties
and the corresponding failure tolerance levels based on
control plane models [1], [3], [6], [25]. Although the
one-time analysis takes more time than simulation, this
approach only requires O(S2) or even fewer rounds of
verifications (S is the number of subnets), making it
much more scalable than the simulation-based approach.
However, the models used by analysis-based verifiers
abstract away some important features, and therefore
cannot faithfully reflect the behaviors of real network
devices. For example, Tiramisu does not support features
like protocol- or port-based packet filters. Most of these
models are based on the logical Layer-3 topology, rather
than physical Layer-1 topology. Therefore, they may
over- or under-estimate the failure tolerance of prop-
erties. We believe fidelity should be the top concern,
because one missing property can cause false negatives
in the verifiers and/or fail the critical applications if used
in synthesizers.

(iii) Readability problem: Even if we mine the specifica-
tion from the configurations, the resulting specification
contains a large number of intents (or properties). The
sheer volume of intents makes it challenging for network
operators to comprehend the inherited network. For
example, in the DC1 dataset (§ VI-E), with 230 subnets,
the number of reachability intents is ∼ 5 × 104, even
larger than the number of configuration lines, which is
∼ 2 × 104. This is caused by the existing definition of
the specification. Such a large number of intents makes
the specification hard for human operators to interpret.
The above problems motivate us to ask: Can we mine
the specification from network configurations with both
high scalability and fidelity, and readability? Towards
the first question, we make the following observations:

Observation 1: A limited number of failure scenarios
are related to a given property. In our context, a property
refers to data-plane behaviors such as end-to-end reachability,
waypointing, or load balancing between subnets at network
edge ports [1], [3], [25]. Consider two properties with the
forwarding paths A → B → C and A → B → D,
respectively. It is easy to see that when l = 1, we only need
to check three failure scenarios: failure of BC for the first,
failure of BD for the second, and failure of AB for both.
That is, other possible failure scenarios, say failure of AD, are
irrelevant to all candidate properties, and thus can be skipped.
We emphasize this principle could eliminate a considerable
number of scenarios, because when l is relatively large, say
l = 2, each property can only relate to a handful of scenarios.
As such, most scenarios can be skipped without simulations.
However, in practice, route reflectors are often configured in
eBGP [3], causing the forwarding path to diverge from the
routing path, which makes it challenging to identify all links
(i.e., the forwarding and routing paths) related to the property
(see Fig. 6).

Observation 2: Computing Layer-3 topology dominates the
simulation. To maintain high fidelity, the specification mining
must consider failures at the physical and data link layers
(i.e., Layer-1 and Layer-2 of the OSI model [26]),1 instead
of only logical failure scenarios at Layer-3 (Network Layer
in the OSI model). Note that generating the routing and
forwarding tables typically involves two steps: first, computing
the Layer-3 topology from the underlying Layer-1 topology
and Layer-2 configuration; and second, computing routes over
the resulting Layer-3 topology. We observe that computing the
Layer-3 topology based on the underlying Layer-1 topology
and Layer-2 configuration is surprisingly more costly (∼ 200×
according to our experiments §VI-B) than computing routes
based on Layer-3 topology. This high cost is mainly due to
the large number of physical ports, each configuring thousands
of VLAN, which introduces significant complexity. As such,
reducing the cost of computing Layer-3 topology could save
considerable time during one simulation.

Observation 3: A large number of intents in the mined
specification share a similar pattern. For example, consider
a typical set of five reachability intents, s1 → d1, s1 → d2,
s2 → d1, s2 → d2, s3 → d1. Here, s1, s2, s3 and d1, d2 repre-
sent non-overlapping source and destination subnets. Clearly,
these five intents can be merged into a more concise intent
s1, s2, s3 → d1, d2 (summary intents) with an exception intent
s3 → d2 (exception intents), avoiding repeated References to
the same subnets. Such a simple pattern occurs frequently in
the networks we studied. For example, in the DC1 dataset
(§ VI-E), we observe that among 51,631 reachability intents,
the source/destination subnets are repeated 227 times on aver-
age. Compressing such redundancy can significantly reduce
the total number of intents. Even though this example is
simple, directly clustering subnets with identical source and
destination is not feasible, as this method may still lead to an
explosion in the number of resulting intents, reaching up to
O(104) (see Fig. 21). Therefore, how to balance the number
of summary intents and exception intents is challenging.

With the above observations, we propose NetMiner, a tool
for mining network specification, to address this problem. Net-
Miner chooses the simulation-based approaches (e.g., Batfish)
such that it will not sacrifice any fidelity. Specifically, we make
the following contributions.

Contribution 1: General Scenario Aggregation. We pro-
pose a General Scenario Aggregation method that eliminates
the irrelevant failure scenarios. Experiments show that the
aggregation method reduces the number of failure scenarios
by 2 to 3 orders of magnitude, thereby accelerating the overall
intent mining by 5–10× (see Fig. 13).

Contribution 2: Fast Topology Mapping. We propose a
Fast Topology Mapping method, which can rapidly generate
the Layer-3 topology from the Layer-1 topology. Compared
with the baseline approach, generating Layer-3 topology from
scratch used by Batfish, our method can reduce the processing
time from seconds (192s) to milliseconds (1.423ms) (see
Table IV). Finally, based on the reduction in processing the

1For simplicity, we use Layer-1 to represent both Layer-1 (physical layer)
and Layer-2 (data link layer) of the OSI model, thus the logic of Layer-1
contains physical link aggregation, VLANs, MAC addressing, etc.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 3

Layer-3 topology, our method achieves an overall speedup
ranging from 3× to 357× (see Table V).

Contribution 3: Intent Compression. We introduce the
definition of high-level specification for describing intents
concisely and propose a method named Intent Compression
to derive such specification. Compared to the low-level spec-
ification, our method reduces the number of lines by one
to two orders of magnitude (see Fig. 19), and the average
number of characters per line is reduced by 3× (see Fig. 20)
for various properties (e.g., reachability, waypointing), across
multiple protocols (e.g., OSPF, BGP), and network types (e.g.,
WANs, DCNs).

Limitations. NetMiner currently cannot mine intents of path
preference [1], as it does not model non-best routes, and
has limited support for mining traffic-related intents, e.g., the
minimum throughput from subnet A to subnet B is 100Mbps.
In addition, the fidelity of NetMiner depends on the underlying
network simulator, e.g., Batfish [14], which may not support
all features and devices of various vendors.

Extensions. This paper extends our previous work [27] by
improving the readability of the specifications. Specifically, we
introduce the definition of high-level specification, and propose
a method to efficiently derive such high-level specification.

II. MOTIVATION

In this section, we motivate specification mining (§II-A),
define the problem of low-level specification mining (§II-B),
and discuss the limitations of existing methods (§II-C). We
then explain the necessity for the high-level specification (§II-
D) and the challenges of deriving it (§II-E).

A. Why Mining Specification

Enabling network changes verification. According to
Uptime, an international network advisory organization, their
2021 [28] and 2023 [29] reports indicate that 58% and 45%
of network failures, respectively, were caused by configuration
changes. Verifying that a configuration achieves its intended
effect typically involves analyzing targeted header spaces, e.g.,
checking reachability between two subnets. However, identify-
ing side effects is harder, because configuration changes may
impact seemingly unrelated header spaces and hidden failure
scenarios [4]. Moreover, compressing redundant configurations
requires verifying the semantic consistency between the orig-
inal and compressed versions, which usually needs to verify
all properties across multiple failure scenarios. Fortunately, as
shown in [30], [31], using specifications to analyze configu-
ration changes can reduce configuration-induced errors.

Helping human understanding. Network operators often
complain about inheriting an already working legacy network,
whose intents are hard to tell [32]. The complexity of routing
protocols makes it challenging for operators to understand the
network intents from low-level configurations.

Automatically generating the specification of a network
helps operators to better understand what the network is
currently doing, and makes network update easier. To address
this, related works such as Anime [32] and Config2Spec [25]
show that specifications assist operators in understanding the
network.

TABLE I
NETWORK PROPERTIES (s IS ROUTER OR PREFIX, w IS ROUTER,

AND d IS PREFIX)

Facilitating intent-based networking. Current network
management relies heavily on humans. Consequently, manual
operations not only increase the burden of administrators,
but also increase the network security risks. As shown in
Uptime’s annual reports from 2021 to 2025 [28], [29], [33],
[34], human errors accounted for roughly 40% to 63% of
network failures. Generally, inferred intents can be used as
input for any intent-based networking tool, e.g., automatic
configuration synthesis [8], [9], [10], [11], [12]. In addition,
automatic configuration mining enables automatic migration,
e.g., transparent migration from legacy networks to SDN, other
vendor networks [35].

B. Definition of Low-Level Specification

The following formulates the problem of network specifica-
tion mining. The formulation is inspired by Config2Spec [25],
but differs in how failures are modeled.

Failure model. The network we consider has a set of nodes
(physical switches or routers) N , and a set of physical links
links connecting the ports of two nodes. A small number of
nodes or links are allowed to fail, due to hardware or software
failures of nodes or ports. We define a link failure scenario as
a partition of links into (linksup, linksdown), which consists
of links that are up and down, respectively. Node failures can
be viewed as failing all the links that are connected to the ports
of the nodes. Without extra explanation, the rest of the paper
will use scenario to denote a link failure scenario. Note that
our model considers failures of physical (Layer-1) links, rather
than logical (Layer-3) links, as considered by Config2Spec and
control plane verifiers like NetDice, etc. This makes the failure
model more realistic.

Intent and property model. An intent I is defined as
p : t, where p is a property, and t is the failure tolerance
of p. Table I lists the properties considered in this paper,
including reachability, waypoint and load balancing. The fail-
ure tolerance t is an integer representing the number of link
failures. For example, Reachability(s, d) : 3 means packets
sent from source s can reach destination d when there are
no more than 3 link failures. We use the notation mt(p) to
denote the maximum failure tolerance of a specific property
p. Given network configurations C, its specification SpecC is
a collection of intents that are defined as:

SpecC =
{
p : mt(p)|p ∈ PC

}
(1)

where PC is the set of all properties that hold without node
or link failures. Note here, PC can also be limited to a subset
of all properties, which operators care about.

We usually consider a small number (say less than 6) of
link failures, which is mostly enough for operators (when

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

Fig. 1. The tools available for mining specification.

not accounting for link aggregations). Therefore, we have the
following compromised version for specification:

SpecCL =
{
p : min(L,mt(p))|p ∈ PC

}
(2)

where L is the bound on the maximum number of link failures.

Problem 1: Given network configuration C and a bound L
of maximum failures, find the specification SpecCL .

C. Limitations in Mining Low-Level Specification

Low fidelity and scalability. Except for mining specifica-
tion from the configurations, one can also mine specification
from (1) network states (e.g., FIB or RIB) with data plane
verifiers [18], [19], or (2) network behaviors (e.g., network
traffic) [8], [32], [36], [37], [38]. However, these methods
may miss intents like “A subnet is always reachable under
a single link failure”. In this paper, we focus on mining from
configurations, as this method can reveal the complete set of
properties.

(i) Property-Aggregation Approaches. Most simulation-
based verifiers, e.g., Batfish [14], CrystalNet [15],
ShapeShifter [16], Plankton [2] and DNA [17] can generate
FIBs and RIBs for a certain scenario, and the data plane
verifiers [18], [19], [20] can then rapidly check multiple
(all) candidate properties on that scenario. Such a prototype
aggregates the properties but has to enumerate all failure
scenarios, whose number amounts to O(Cl

L), where l is the
failure tolerance level and L is the number of links.

(ii) Scenario-Aggregation Approaches. Analysis-based ver-
ifiers like Tiramisu [1], NetDice [3] and Minesweeper [6]
can check if a certain property holds for all failure scenarios.
Building upon these tools avoids the link failure enumeration,
but in turn needs to enumerate the properties, which leads
to O(S2) model calculations in an S-subnet network. More
importantly, all these works have a lower fidelity than the
simulation-based approach. For example, Minesweeper has not
modeled features like multiple virtual routing and forwarding
(VRFs) and multi-hop BGP neighbor; Tiramisu does not
support features like protocol- or port-based packet filters,
packet filters impacting route advertisements and route filters
matching multiple community tags.

(iii) Property-Scenario-Aggregation Approaches. Analysis-
based methods like Hoyan [5] and SRE [4] combine header

Fig. 2. An example illustrating the differences when mining specifications
based on Layer-1 topology and Layer-3 topology. Subnets d1 and d2 are
attached to router r3 and router r4, respectively. All devices are in the same
OSPF domain and the weights of all links are the same.

space and failure space to improve the scalability of verifi-
cation in larger and complex networks. Config2Spec [25] is
the closest work to us, which iterates over the simulation-
based verifier (Batfish [14]) and analysis-based verifier
(Minesweeper [6]) by the predicted cost. These three tools can
analyze multiple properties over multiple scenarios. However,
such scalability improvement comes from the control plane
models used in the analysis-based verifiers. Therefore, they
all suffer from fidelity defects. For example, all the above
approaches only consider logical failures, i.e., failure of Layer-
3 links, and as a result, would over- or under-estimate the
failure tolerance of properties. Taking Fig 2(a) as an example,
which is based on Layer-3 topology. Since there are two paths
from r1 to d1, the property p1 has a failure tolerance mt = 1;
However, if considering the Layer-1 topology shown in Fig
2(b), p1 should have a failure tolerance mt = 0. The reason
is that r1 can only reach d1 via VLAN 1 through the path
r1→ s1→ r3.

To consider physical link failures, we need to have a way
to determine which Layer-3 links would be affected once
physical links fail. This is not easy since the mapping between
Layer-1 links and Layer-3 links is complicated. For example,
failing Layer-1 link s1− s3 affects two Layer-3 links r1− r3
and r2− r3, but failing Layer-1 link r3− s3 does not affect
any Layer-3 links.

In contrast to all previous works, NetMiner aims to
achieve Property-Scenario-Aggregation with pure simulation-
based verifiers.

D. Why High-Level Specification Is Necessary

Many tools [1], [3], [4], [6], [25] express intents using a
subnet-to-subnet format, referred to as the low-level specifi-
cation, which results in a large number of intents. The large
number of intents, ranging from ∼ 2× 103 to ∼ 5× 104 lines
across two DCN networks and six WANs, with an average of
127 to 139 characters per line (see Experiment VI-E), poses
challenges for human comprehension.

To enhance readability and without losing the precision
of the low-level specification, we propose a dual-view rep-
resentation format, i.e., the high-level specification (syntax
outlined in Fig. 12). In the coarse-grained view, summary
intents abstract intents into a subnet group-to-subnet group
format, significantly reducing the number of intents while
preserving key semantics and providing operators with a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 5

Fig. 3. The low-level specification for the network in Fig. 17 and the high-
level specification for the low-level specification.

comprehensive overview of the network. In the fine-grained
view, exception intents address individual intents that do not
fit into summary intents, ensuring precision by highlighting
exceptions. Together, these views enable operators to effi-
ciently understand network intents, with the coarse-grained
view offering a broad understanding and the fine-grained view
providing the necessary detail to confirm specific cases.

For example, Fig. 3 shows the low-level specification used
in previous work [25], which requires 7 intents to express the
intents and contains redundancy, e.g., the subnet 10.10.10.3/28
is repeated four times. In contrast, as shown in Fig. 3, the
high-level specification first defines two subnet clusters, c1
and c2. It then specifies the intent between them: c1 to c2
has the summary intent (“frankfurt”, mt = 3), meaning that
any packet starting from a subnet in c1 and reaching a subnet
in c2 will pass through “frankfurt”, even if any two links
fail. This approach specifies each subnet only once, eliminates
redundancy, and requires just 3 intents instead of 7. Finally, we
provide an exception intent to this summarization: the intent
‘10.10.10.4/28 to 10.10.10.8/28 passes through “paris” with
mt = 2’ is not included.

Problem 2: Given a low-level specification Spec, the goal
is to derive a high-level specification H-Spec, consisting of
summary intents and exception intents. The summary intents
provide an abstraction of Spec, while the exception intents
refine it. The high-level specification satisfies:

1. (Semantic equivalence) The semantics of H-Spec,
defined as the union of summary intents minus the union
of exception intents, is equivalent to Spec:

H-Spec ≡ Spec (3)

2. (Minimal size) Among all such specifications,
H-Spec minimizes the total number of intents:

H-Spec = arg min
H-Spec′≡Spec

|H-Spec′| (4)

where |·| counts both summary and exception intents.

E. Why Deriving High-Level Specification Is Hard

The challenge in deriving the high-level specification is to
minimize both summary intents and exception intents simulta-
neously. This trade-off depends on how subnets are clustered.

Fig. 4. The workflow of NetMiner.

When more subnets are merged into a single cluster, the high-
level specification will contain fewer summary intents but more
exception intents, and vice versa (as shown in Experiment
VI-E). For example, if each subnet is treated as a separate
cluster, the high-level specification degenerates into the low-
level specification.

Therefore, finding a better solution for subnet clustering is
challenging. The existing traffic intent compression method,
Anime [32], requires operators to specify the label for each
subnet, which increases the operator’s burden and may not
lead to a better solution. Additionally, if we directly cluster
source subnets with identical destinations, the number of
summary intents may not decrease compared to the low-level
specification. For example, in the case above, all subnets would
be treated as individual clusters because the destinations of
source subnets 10.10.10.3/28 and 10.10.10.4/28 are not exactly
the same. Finally, enumerating all possible subnet clustering
combinations leads to exponential time complexity [39].

Thus, NetMiner aims to find a solution of subnet clusters
that minimizes the number of summary and exception intents.

III. OVERVIEW

In this section, we first show the workflow of NetMiner
(§III-A). Then we explain how to achieve high scalability with
General Scenario Aggregation (GSA) (§III-B), high fidelity
with Fast Topology Mapping (FTM) (§III-C), and high read-
ability with Intent Compression (IC) (§III-D).

A. Workflow of NetMiner

The workflow of NetMiner is shown in Fig 4, which
takes as the input the network configuration C, NetMiner
outputs the formal specification SpeccL that consists of prop-
erty p and the corresponding failure tolerance level mt.
NetMiner decouples the vendor-dependent behaviors (driver)
and vendor-independent behaviors (core), which ensures its
fidelity.

In its core layer, NetMiner first calculates the initial property
space P c based on the configuration and physical topology to
form a set of unverified properties (UP) (1©).

NetMiner then verifies UP with different failure tolerance
levels, starting from an all-link-up Layer-1 scenario, i.e., l =
0. Then, NetMiner maps the current Layer-1 scenario (L1s)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

into the Layer-3 scenario (L3s) (2©), which, together with the
configurations, would be fed into the simulation-based control
plane verifier. The simulation produces a concrete data plane
for L3s (3©), and then the data plane verifier can check whether
the UP is satisfied under L3s, i.e., Property-Aggregation (4©).

If UP does not hold, NetMiner would update the tolerance
of the property in UP with current l and add UP into the
specification.

Otherwise, NetMiner produces the failure scenarios for the
next tolerance level. In doing so, NetMiner first calculates
the hot links (5©), i.e., links that form the forwarding path
and routing path, of L3s for each property in UP. These
links form a property-related Layer-3 scenarios, which will
be further mapped back into Layer-1 scenarios (6©). Through
this process, NetMiner identifies and aggregates the Layer-1
scenarios shared across the properties in UP. Finally, each
Layer-1 scenario from the aggregated scenarios becomes the
new L1s, and the properties related to it form the new UP (7©).
The mining process recursively iterates until l reaches L.

Afterward, NetMiner generates the low-level specification
with a large number of intents. NetMiner then compresses it
to produce the high-level specification with a concise format
(8©).

We highlight three technical challenges in this workflow.
First, when calculating the hot links, NetMiner must not
involve any vendor-dependent control plane behaviors to avoid
loss of fidelity, i.e., it should be based purely on the output
of the control plane (e.g., RIBs, FIBs). This is challenging
considering the complex recursive route resolution process,
the existence of static routes, and route reflectors, etc. Sec-
ond, Layer-1 and Layer-3 mapping is frequently invoked
through this process, which, as mentioned in §I, dominates
the one-time verification. Third, NetMiner must identify a
better solution from all combinations of subnet clusters that
minimizes both the number of summary and exception intents
in the high-level specification. NetMiner designs three key
modules, General Scenario Aggregation (GSA), Fast Topology
Mapping (FTM) and Intent Compression (IC) for addressing
the above three challenges. We present these three modules
with concrete examples in the following sections.

B. General Scenario Aggregation

Properties like reachability and waypoint cannot be held if
there do not exist any physical links from the forwarding path
and the routing path. We call links that form these two paths
hot links. The failure scenarios that do not contain any hot
link are considered irrelevant to the property.

Hot links identification. To identify all hot links, the
straightforward way is to model the control plane behavior,
including importing or redistributing routes, filtering routes,
selecting the best routes, etc., to derive the related links
of a property [3]. However, control plane behaviors are
vendor-dependent, making it hard to model them correctly.
For example, different vendors have different processes for
selecting the best routes; most vendors need a route to exist
in the main RIB so that it can be imported to BGP, while
some vendors do not require the existence of routes. Therefore,

identifying the hot links based on a control plane model can
impact fidelity.

We observe that the vendor-dependent behaviors, i.e., route
propagation and best route selection, are already handled after
the simulators compute the routes, i.e., routing table. This
reveals the chance to trace forwarding paths and routing paths,
purely from the rules of the routing table, e.g., the routing
last hop and the forwarding next hop. One critical point
through this process is that we need to model the routing
recursion semantics such as iBGP’s dependency on OSPF for
the completeness of hot links. We detail this algorithm in §IV-
A and prove it preserves the fidelity.

Failure scenarios aggregation. After identifying the hot
links for each property, NetMiner generates their correspond-
ing failure scenarios and simulates the control plane under
each failure scenario. However, directly simulating all failure
scenarios for each separate property still results in a large
number of simulations. Here, we observe that many failure
scenarios are shared by multiple properties, and thus NetMiner
first aggregates them and simulates each of these failure
scenarios once, significantly reducing the total number of
simulations. Taking Fig. 5(a) as an example, and consider
two reachability properties p1 (r1 → d) and p2 (r2 → d),
with a bound L = 3 on failure tolerance. Fig. 5(b) and (c)
show the failure scenarios that need to be analyzed for p1 and
p2, respectively. Without aggregation, we need to analyze 23
failure scenarios. However, 7 out of these failure scenarios are
shared by both properties, and we can analyze them together
without a single simulation. As a result, the total number of
simulations reduces from 23 to 16.

In real cases, the reduction can be quite significant: Fig 14
shows that failure scenarios aggregation can reduce the total
number of simulations by 1-2 orders of magnitude (see § IV-A
for details).

A walk-through example. We show an example in Fig. 6(a)
to illustrate how we identify the hot links, and hence reduce
the failure scenarios. We consider the reachability property p1
from device r1 to subnet d. (1) For forwarding paths, we start
from device r1, and find the next hop to d is r5 in BGP routing
table. Because this is a recursive route, we then find the next
hop on r1 to ipr5 is r2 in OSPF routing table and the next hop
of r2 to ipr5 is r4 in static routing table. With the same steps,
we finally get the forwarding paths as r1− r2− r4− r5− r7.
(2) For routing paths, we also start from device r1, we find
the routing last hop of r1 to d is r3 (the simulator could
provide this information) in BGP routing table. Then we find
the forwarding path from r3 to ipr1 is r3− r2− r1 in OSPF
routing table (the step is similar to (1)). We next know the last
hop of r3 to d is r5 in BGP routing table. We finally get the
routing path as r1− r2− r3− r5− r7. We calculate the hot
links in Fig. 6(b). In this example, the simulator helps us to
model a modified routing announcement, i.e., the simulator
tells the forwarding next hop of r1 to d is r5 instead of
r6 (avoid modeling vendor-dependent behavior). But we still
need to consider the vendor-independent routing recursion. As
in Fig. 6(c), if we don’t consider routing recursion, the link
r2 − r5 would be ignored and actually affect the forwarding
behavior.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 7

Fig. 5. An example of failure scenarios aggregation. The network contains five routers and one switch. The numbers on the links represent the number of
physical links aggregated. Device r1 and r4 are reachable via VLAN1 and device r2 and r4 are reachable via VLAN2.

Fig. 6. The network contains seven network devices and a directly connected
route to d exists on device r7. r5 and r6 have an eBGP neighbor relationship
with r7, respectively, while r3 is a route reflector. The remaining six devices,
except r7, are configured with the OSPF protocol.

C. Fast Topology Mapping

NetMiner avoids the re-computation of Layer-3 topology
using Fast Topology Mapping (FTM). It is based on two
observations: (1) Each layer-3 link is associated with a few
number of Layer-1 links, and vice versa. (2) The semantics
of Layer-2, including VLAN, STP, etc., are relatively simple
(compared with Layer-3 route computation) Therefore, we
can construct a bidirectional map between Layer-1 topology
and Layer-3 topology, to avoid re-computing Layer-3 topology
from scratch each time a Layer-1 link is failed.

Initially, NetMiner constructs the Layer-3 topology based
on the Layer-1 topology, meanwhile computing two maps: one
from a Layer-1 failed link to a Layer-3 failed link, and one
from a Layer-3 hot link to a Layer-1 hot link. Then, each time
NetMiner needs to fail a Layer-1 link, it can quickly generate
the Layer-3 topology based on the first map. When NetMiner
has identified some Layer-3 hot links, it can use the second
map to obtain the corresponding Layer-1 hot links.

In real cases, the mapping can significantly accelerate the
simulation under failure scenarios, e.g., 5-6 orders of magni-
tude faster as shown in Table IV.

A walk-through example. We maintain bidirectional map-
ping when constructing the Layer-3 topology with all Layer-1
links up. This process only needs to be done once. As shown

Fig. 7. An example of Fast Topology Mapping.

in Fig. 7(b), suppose one needs to fail a link s1−r3 at Layer-1,
after looking up in the mapping, both r1−r3 and r2−r3 will
be affected at Layer-3. Then we find that paths r1− s1− r3
and r2−s1−r3 of these two links at the Layer-1 topology are
all blocked, so both links failed. For another example, when
s3−r3 in Layer-1 is failed, we determine that r3−r4 in Layer-
3 will be affected, and find that there is another path, i.e.,
r3− s2− r4 in Layer-1. Then, no Layer-3 links are affected.

D. Intent Compression

NetMiner avoids the enumeration of subnet clusters by
using the heuristic method Intent Compression (IC). First, we
formally convert the low-level specification into the property
matrix, as shown in Fig. 8 (left), for the purpose of generally
processing properties.

Then, for a given source subnet, all related intents, where
this subnet serves as the source, form a row vector in prop-
erty matrix. The difference between vectors of two subnets
quantifies the similarity between the two subnets. We observe
that this similarity is directly related to summary and exception
intents in the specification. If the distance between two subnets
is small, merging them results in fewer exception intents in
the high-level specification. However, subnets with smaller
distances are relatively few, which leads to a higher number of
summary intents, and vice versa. We then extract the difference
between subnets as a distance matrix, as shown in Fig. 8
(right). Based on this, we use the hierarchical clustering
method [40], which iteratively clusters two elements with the
minimal distance until only one cluster remains, generating a
dendrogram as shown in Fig. 9. We then enumerate the dis-
tance threshold to derive the high-level specification, avoiding
the enumeration of cluster combinations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

Fig. 8. The property matrix (left) and the distance matrix (right) for the
low-level specification in Fig. 12. For a better explanation, assume that
there are two additional subnets 10.10.10.2/28 and 10.10.10.7/28. Here,
s1=10.10.10.2/28, s2=10.10.10.3/28, s3=10.10.10.4/28, d1=10.10.10.6/28,
d2=10.10.10.7/28, d3=10.10.10.8/28. w1 is frankfurt and w2 is paris. For
the property matrix, the integer number is the tolerance. For the distance
matrix, the integer number is the distance between two subnets.

Fig. 9. The dendrogram generated by hierarchical clustering for source
subnets in Fig. 8. The height value represents the distance at which two
clusters are merged.

In real cases, the number of lines in the high-level specifica-
tion is reduced by one to two orders of magnitude, as shown
in Fig. 19.

A walk-through example. Based on the dendrogram shown
in Fig. 9, we can effectively derive subnet clusters. For
example, when TM = 0, the tree is cut into three nodes,
corresponding to {s1}, {s2}, {s3}. For TM = 1 ∼ 3, the
clusters are {s1}, {s2, s3}. When TM ≥ 3, the clusters are
{s1, s2, s3}. We then generate the high-level specification and
count the number of intents (or lines) for each solution of
subnet clusters. We observe that when TM = 1 ∼ 3, the high-
level specification has the minimum number of intents: 4, as
shown in Fig. 3.

IV. MINING LOW-LEVEL SPECIFICATION FROM
CONFIGURATIONS

A. General Scenario Aggregation

The computation of failure scenarios relies on identifying
hot links whose failure will change the forwarding or routing
paths. In the following, we first define hot links, and then show
how to compute relevant failure scenarios by identifying hot
links, and finally show how to aggregate these scenarios to
improve scalability.

Definition 1: Given a property p(s, d) and failure scenario
f(linksup, linksdown), a link link ∈ linksup is “hot” with
respect to f and p, iff failing link will change the forwarding
behavior (paths) of the packets from s to d.

Identifying hot links. For each property, NetMiner identi-
fies all the hot links solely based on the RIBs computed by
simulators (e.g., Batfish). This makes the hot link identification
fully agnostic of vendor-specific protocol implementations,
which has already been accounted for when simulators com-
pute the routes, and therefore does not hurt fidelity. In contrast,
NetDice [3] designs a customized algorithm to model the route
computation process, and the hot links may not be correct due
to vendor-dependent behaviors.

NetMiner recursively resolves the forwarding path of the
packets, and the routes that are used during the forwarding.
Meanwhile, NetMiner resolves the path that those routes
are propagated. Then, NetMiner classifies all links on the
forwarding and routing paths as “hot”, and computes relevant
failure scenarios by failing one of those hot links each time.

Algorithm 1 Hot Link Identification

Alg. 1 shows this process, where the symbols are defined
in Table II. Given a source node s, a destination prefix d, and
a set of routing tables, the algorithm outputs a set of hot links
H. First, the hot links appear on either the forwarding path or
the routing path (Line 1-2). For the forwarding paths, if s has
a directly connected route to the prefix d, then the algorithm
returns the link from s to the next-hop device (Line 5-6);
Otherwise, the algorithm resolves the next-hop IP addresses
by looking up the RIBs of the protocol (Line 7-8). For each
next-hop IP address d′, the algorithm recursively computes the
forwarding path from s to d′ (Line 9), and also the forwarding
path from the device directly connected to d′ to the destination
prefix d (Line 11-12). The forwarding path would be the union
of the above two forwarding paths (Line 13). The process
of computing routing paths is very similar (Line 14-24). The
difference is that: (1) only dynamic routes (OSPF, BGP, etc.)
are considered since static routes do not depend on any links

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 9

TABLE II
NOTATIONS USED FOR HOT LINK IDENTIFICATION

Fig. 10. The process of Alg. 1 running on the network of Fig. 6. We simplified
the function parameters in the graph. We omit the leaf nodes in the graph,
which are the functions F and R.

(Line 18). (2) instead of the next-hop IP address, the algorithm
resolves the IP address that the last-hop router Node(d′) uses
to send the route to the current node s (Line 19); (3) the
reachability of the route recursively depends on the packet
reachability from Node(d′) to s (Line 21).

Fig 10 shows the tree when using Alg. 1 to compute hot
links for the previous example (Fig 6). The algorithm starts
from root node H() and recursively calls functions F () and
R(), which may recursively call functions H() and R(). At
each node, the set of hot links is shown below the function.

Theorem 1: For a p(s, d) and a failure scenario f . The links
H returned by Alg. 1 contains all hot links for p(s, d) on f .

Proof: For clarity, we only show the proof sketch here.2

First, we show the theorem holds when there is only OSPF:
the theorem holds when the subnet d is one-hop away from s;
and if the theorem holds for k-hops away, then it also holds for
(k+1)-hops away. Then, we include the cases for static routes,
OSPF, and BGP. The proof is similar except that the BGP route
may be indirect (depending on OSPF or static routes).�

Aggregating failure scenarios. After identifying the hot
links, NetMiner generates failure scenarios for each property,
and aggregates the common failure scenarios. To realize the
aggregation, NetMiner maintains a set UP of unverified prop-
erties, and a set Fl of failure scenarios for each tolerance level
l. Each f ∈ Fl is registered to a set of properties prop(f),
meaning that NetMiner needs to simulate f to determine
the failure tolerance levels for these properties. Let L1 be
the set of all Layer-1 links. Initially, F0 = f(L1, ∅), and
prop(f) = UP consists of all properties that hold under no
failures. NetMiner simulates the control plane under failures in

2The full proof is available at https://github.com/916267142/NM-Prove

Fl starting from l = 0, and retrieves the FIBs. Then, for each
property p ∈ prop(f), NetMiner checks if p holds based on
the FIBs. If p holds, then NetMiner identifies the Layer-3 hot
links with Alg. 1, and maps the Layer-3 hot links to Layer-
1 hot links with FTM. Let link1 be such a hot link, which
aggregates num physical links. Then, NetMiner moves p from
prop(f) to a new prop(f ′), where f ′ ∈ Fl+num. Otherwise,
if p does not hold, then, NetMiner moves p from prop(f) to
the set of verified properties V P , and sets the tolerance level
of p to l. This process continues when Fl = ∅ for each l ≤ L.

Simulating the control plane under failures. For each
failure scenario f1(links1up, links

1
down) (a partition of Layer-

1 links as defined in §II-B), we derive the corresponding
Layer-3 failed links links3down = M1→3(links1down), where
M1→3 is a map from Layer-1 links to Layer-3 links (FTM
as defined in the following subsection.) Then, we feed the
Layer-3 failure scenario f3(links3up, links

3
down) to off-the-

shelf control plane simulator or emulator, and retrieve the
forwarding tables (FIBs) and routing tables (RIBs).

Supporting more properties. NetMiner is extensible to
mine any property that can be inferred by the best routes
from RIBs. The properties include equal length paths, bounds
on path length, multi-path consistency, path disjoint, flow
congestion, egress, etc [1], [3]. However, NetMiner does
not currently support path preference [1], because NetMiner
does not model non-best routes. NetMiner also cannot mine
isolation because there is no forwarding path between isolated
peer ends.

NetMiner is extensible to mine any property that can be
inferred by the best routes from RIBs.

B. Fast Topology Mapping

NetMiner needs to compute what Layer-3 links will fail
when failing a Layer-1 link, for the control plane simulator
(e.g., Batfish) (Task 1). This is time-consuming if NetMiner
directly uses Batfish to recompute a new Layer-3 topology. In
addition, after NetMiner uses Alg. 1 to identify the Layer-3 hot
links, it needs to compute the Layer-1 hot links (Task 2). To
efficiently support the above two tasks without re-computation,
NetMiner constructs bidirectional maps between Layer-1 links
and Layer-3 links.

Initializing the Layer-3 topology. Let L1 be the set of all
Layer-1 links.3 Then, NetMiner constructs the set of all Layer-
3 links L3, such that (s, d) ∈ L3 iff the following conditions
are satisfied: (1) an interface of s and another interface of d
are in the same subnet; (2) these two interfaces are reachable
through some VLAN; (3) there is at least a physical path (a
sequence of Layer-1 links) between these two interfaces. We
initialize the Layer-3 topology in the following two steps:

Step 1: Layer-2 topology construction. Given L1, NetMiner
obtains the virtual links between Layer-2 port and Layer-1
port from the network configurations, and then derives the
links between Layer-2 ports. As shown in Fig 11, R2-Eth2
and S1-Eth4 are two connected Layer-2 ports.

3One viable method of obtaining L1 is to use the SNMP protocol to read
the Physical Topology MIB of each device [41].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

Fig. 11. An illustration of Layer-3 topology construction for Fig 7. Here,
dashed and solid links represent the virtual links we create and the real links,
respectively.

Step 2: Layer-3 topology construction. NetMiner creates
virtual links between each Layer-3 port with all Layer-2 ports
on the same device. Then, NetMiner constructs the Layer-
3 links L3 by simulating the forwarding of Layer-2 frames
according to VLAN numbers. As shown in Fig 11, itNetMiner
constructs a Layer-3 link (R2-Vlanif2, R3-Vlanif2) since their
frames can traverse a path R2-Eth2 → S1-Eth4 → S1-
Eth5 → R3-Eth6.

During the construction of Layer-3 topology, NetMiner also
computes two maps. For each l3 ∈ L3, let Paths(l3) be
the set of all physical paths for l3. For example, in Fig 7,
Paths((r3, r3)) = {r3 − s3 − r4, r3 − s2 − r4}. For each
l1 ∈ L1, let Links(l1) be the set of Layer-3 links that “use”
l1. Formally, Links(l1) is defined as:

Links(l1) = {l3|∃path ∈ Path(l3), l1 ∈ path} (5)

NetMiner needs to re-initialize the Layer-3 topology if the
physical topology changes, which is quite infrequent. As a
result, we believe a minute-level running time for such a task
is affordable in most cases.

Defining the bidirectional maps. After the initial con-
struction of Layer-3 topology, NetMiner can realize the
bidirectional map between Layer-1 links and Layer-3 links:
• M1→3 : L1 → 2L3, which maps Layer-1 links L1 to a

set S of Layer-3 links, satisfying that if links in L1 fail,
then Layer-3 links in S will fail.

• M3→1 : L3 → 2L1, which maps a Layer-3 link l3 to a
set of S Layer-1 links, satisfying that failing any other
links not in S will not affect l3.

Task 1: From Layer-1 failed links to Layer-3 failed links.
Each time NetMiner needs to simulate the control plane after
failing a Layer-1 link L1, it uses Eq. (6) to compute the Layer-
3 failed links M1→3(L1), without re-computing the Layer-3
topology using simulators (e.g., Batfish).

M1→3(L1) = {l3 ∈ Links(l1)|l1 ∈ L1,

@path ∈ Path(l3), path ∧ L1 = ∅} (6)

The time complexity for computing Eq. (6) is O(KNM),
where K is the size of L1, N is the average size of Links(l1),
and M is the average number of links in Path(l3).

Task 2: From Layer-3 hot links to Layer-1 hot links.
After NetMiner identifies the Layer-3 hot links, for each hot
link l3, it uses Eq. (7) to identify the corresponding Layer-1
hot links M3→1(l3).

M3→1(l3) = {l1 ∈ L1|∃path ∈ Paths(l3), l1 ∈ path} (7)

The time complexity for computing Eq. (7) is O(M).

This approach may overestimate the hot links when there
are multiple reachable paths on Layer-1, and the network will
use Spanning Tree Protocol (STP) to select one of the paths.
Currently, we find no performance degradation due to the over-
estimation, and therefore have not considered STP.

C. Optimization - Property Trimming

We initially use the PC (See § II-B) as unverified properties
(UP) that GSA needs to consider. We reduce the number
of properties that GSA needs to consider with two trimming
methods, and thus reduce the number of failure scenarios.

Trimming based on enumeration analysis. For a network
without link aggregation, we can simply set Lt = 1; Other-
wise, we can set Lt to the minimum number of aggregated
links between device pairs. When we finish traversing all fail-
ure scenarios with enumeration, the tolerance of all properties
is determined in the range 0 − Lt. Then, NetMiner takes the
tolerance value of property equal to Lt as unverified properties,
because these properties might have large failure tolerance.

Trimming based on topology condition. Then, we filter
properties that do not meet topology conditions in unverified
properties. If the tolerance value of a property is l, then its
minimum cut must be l+1. Therefore, we select the minimum
cut of property greater than Lt +1 in unverified properties to
be verified. And there are various efficient ways to compute
the minimum cut such as k + 1 connected components.

V. FROM LOW-LEVEL SPECIFICATION TO HIGH-LEVEL
SPECIFICATION

A. Definition of High-Level Specification

Fig. 12 shows the syntax of the high-level specification
H-Spec, which consists of a set of specifications for each type
of property.4 Each property-specific specification H-Spectype is
defined as follows:

(i) The summary intent, denoted as intentsummary, con-
sists of two types of statements, statements and
statementp, statements defines the subnet cluster, e.g.,
c1 : {10.10.10.3/28, 10.10.10.4/28}; statementp defines
the properties that hold among subnet clusters, where
each property is specified by the source subnet cluster,
the destination subnet cluster, and the attributes (tag and
tolerance). Depending on the property type, the tag may
represent the device name for waypointing, the number
of disjoint paths for load balancing, etc. For example,
one summary intent in Fig. 12 can be expressed as (c1,
c2, {(”frankfurt”, 3), (”paris”, 2)}).

(ii) The exception intent, denoted as intentexception, is the
same as the intent in the low-level specification. The
semantics are as follows: if intentexception is included in
intentsummary, then H-Spectype excludes this. Conversely,
it means H-Spectype includes this. We can use additional
information for annotation, but for simplicity, we unify
them as exception intents here. For example, the excep-
tion intent in Fig. 12 can be expressed as (10.10.10.4/28,
10.10.10.8/28, “paris”, 2).

4We design a separate specification to provide a better understanding,
allowing operators to flexibly choose the specification corresponding to the
properties they are interested in.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 11

Fig. 12. Simplified syntax for the high-level specification.

B. Intent Compression

NetMiner uses Intent Compression (IC) to derive the high-
level specification H-Spec, which consists of H-Spectype, so in
the following, we will explain how to derive H-Spectype

Step 1. Quantifying the distances. The first step is to
quantify the distances among different subnets, such that we
can use the distances to cluster subnets. To achieve this, we
represent the low-level specification with a property matrixM
defined as follows.

M(s, d) = {(tag, mt)|(s, d, tag) : mt ∈ L-Spec} (18)

Here, s and d are the source and destination subnets. The left
of Fig. 8 shows a property matrix.

For the source subnet (i.e., the row axis), we use M(s, :)
to represent the intents in which the source subnet s appears:

M(s, :) = (M(s, 0),M(s, 1), . . .,M(s,N)) (19)

For two source subnets i and j, their distance is defined as the
difference of the elements in the corresponding rows of their
property matrices:

Drow
M (i, j) =

∑
k∈Col(M)

|M(i, k)4M(j, k)|, (20)

where 4 is the symmetric difference of sets, e.g.,
{a, b}4{b, c} = {a, c}.

Intuitively, the distance between two subnets corresponds
to the number of exception intents after clustering these two
subnets. Moreover, the number of subnets with a certain
distance decides the number of subnet clusters, which in turn
decides the number of summary intents.

Then, we obtain the Drow
M matrix as shown in Fig. 8

(right). The distance matrix for destination subnet Dcol
M can

be generated in the same way.
Step 2. Calculating dendrogram. After extracting features

of subnet, there are some clustering methods to identify
subnet clusters. Since we do not know the number of clusters
beforehand, many methods, such as K-means [42], do not
apply. Other approaches like DBSCAN [43] and OPTICS [44]
do not require the number of clusters as input, but rely on
some threshold parameters (e.g., distance threshold), which is
difficult to estimate. Mean Shift [45] and Affinity Propagation
[46], on the other hand, generate clusters in one shot, making
it difficult to adjust if the clustering result is not good.

For the above reasons, we use agglomerative clustering, a
bottom-up hierarchical clustering approach, which has been

successfully applied to clustering cloud intent [47] and traffic
[32]. Specifically, NetMiner uses Single-Linkage [40], one
variant of agglomerative clustering, to determine which two
clusters should be merged: at each iteration, it selects the two
clusters that minimize the maximum distance between any two
subnets i and j, calculated by the matrix Drow

M (i, j) for source
subnets (and Dcol

M (i, j) for destination subnets). The output of
the hierarchical clustering is a dendrogram (tree) of subnets,
where the leaf nodes represent the subnets, and the non-leaf
nodes represent the clusters. Each non-leaf node has a value
termed height, which represents the distance between the two
entities merged at that node, as shown in Fig. 9. To this end,
a static threshold can be used: all nodes that are just below
this threshold correspond to distinct clusters [47].

Step 3. Deriving high-level specification. After calculating
the dendrogram for source and destination subnets respec-
tively, we derive H-Spectype as follows. For a given property
type, we enumerate the distance threshold TM starting from
TM = 0 to relatively large upper bound. We derive the high-
level specification and calculate its lines corresponding to TM.
For a given TM, we separately cluster the source and the
destination subnets. For source subnets, we get the clusters
from the dendrogram. After it, all clusters of source subnet and
destination subnet form statements. For statementp, we enu-
merate pairs between all statements. For a source statements
and a destination statement′s, we generate the attributes set
A = {M(s, d) | s ∈ statements ∧ d ∈ statement′s}. We select
the attribute set a ∈ A that appears most frequently in A,
and then (statements, statement′s, a) forms statementp. Next,
all statements and statementp form summary intents. We then
take the difference between summary intents and the low-level
specification to obtain the exception intents. Finally, summary
and exception intents together form H-Spectype.

The time complexity of Intent Compression is O(N2),
where N is the number of intents, as proven in [48].

Our Intent Compression is primarily designed for intents
as shown in Table I, and is not applicable to intents involving
traffic-related intents, because our enumeration method cannot
model continuous variables.

C. Optimizations

Merging source and destination statements. After deriv-
ing the high-level specification, we further combine all source
and destination subnets by splitting them into new subnets.
Then, if two new subnets belong to the same source state-
ment and destination statement, they are clustered into one
new statements; otherwise, they are assigned to separate
statements.

Reducing the threshold enumeration. Since summary
intents are non-decreasing with an increasing distance thresh-
old, while exception intents are non-increasing with an
increasing distance threshold.5 Then, the sum of summary
intents and exception intents initially decreases with distance.
After reaching the critical point, it will start to increase.

5This is evident because for two thresholds T1 and T2, where T1 > T2.
It is easy to use proof by contradiction to deduce that the number of subnet
clusters for T1 will be less than or equal to that for T2. Consequently, the
summary intents of T1 will be less than or equal to those of T2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

Therefore, we start enumerating the thresholds from 0, and
when the total lines of intents begin to show an increasing
trend, we stop the enumeration (as shown in Experiment VI-
E).

VI. EVALUATION

In this section, we evaluate NetMiner on multiple topologies
to address the following questions.

Mining the low-level specification:
• How does NetMiner scale to the actual topologies

compared to state-of-the-art? Experiments show that
NetMiner is 2-5 orders of magnitude faster than the
Property-Aggregation approach with simulation-based
verifiers, and also an average of 10× faster than the
analysis-based approach. (§ VI-A)

• How do General Scenario Aggregation (GSA) and fast
topology mapping (FTM) contribute to NetMiner? Exper-
iments show that GSA reduces the number of failure
scenarios by 2-3 orders of magnitude compared to
Property-Aggregation approach. FTM can improve the
speed of generating Layer-3 topology by 5-6 orders of
magnitude compared to the baseline approach generating
Layer-3 topology. (§ VI-B)

• Can NetMiner support various configuration features
without fidelity loss? Experiments on real configura-
tions show that NetMiner avoids some incorrect results
returned by Config2Spec. (§ VI-C)

Deriving the high-level specification:
• Is the high-level specification derived by NetMiner con-

sistent with operator intent? We validate the high-level
specification with both real and synthetic network con-
figurations. (§ VI-D)

• How readable is Intent Compression (IC)? We show that
the high-level specification reduces the number of lines
by one to two orders of magnitude, compared to the low-
level specification. (§ VI-E)

Implementation. We implement NetMiner with 8k lines of
C++ code and an extra 2k lines to re-implement Delta-net
[19]. We use Batfish6 [14] to generate the data plane (RIBs
and FIBs) and Delta-net to model the data plane. We extend
Delta-net to support load-balancing, and use Delta-net [19] for
single-domain incremental updates to build separate models
for source and destination IPs. However, our framework can
be easily extended to multiple domains, such as APKeep [18].

Approaches for comparison. We implement a Property-
Aggregation (PA) approach, i.e., enumerating failure scenarios,
with Batfish as the control plane simulator, and Delta-net as
the data plane verifier. We implement a Scenario-Aggregation
(SA) approach, i.e., enumerating candidate properties, with the
open-source code of Tiramisu [49]. We use Config2Spec [50]
as the state-of-the-art Property-Scenario-Aggregation (PSA)
approach.

Datasets. We use the following three real datasets and three
synthesized datasets.

(1) Real configurations of two data center networks (DC1
and DC2) from a large public cloud provider. The

6The version of Batfish involved in all experiments is 0.36.0.

configurations include OSPF, BGP, VRF, VLAN, ACL
and link aggregation. DC1 (DC2) has 178 (373) routers,
5314 (8673) physical links, ∼ 0.5k (0.7k) prefixes, ∼ 3k
(0) ACL rules, single (multiple) VRF, and ∼ 200k
(374k) lines of configurations. Based on each dataset,
we construct two additional datasets for comparison
with other tools. (1) W/O ALL, by removing ACL,
VLAN, and link aggregation from the configurations (2)
W/ACL, by removing VLAN and link aggregation from
the configurations. Moreover, we note that the initial
configurations with ACL, VLAN, link aggregation as
W/ACL-PHYS. For W/ACL-PHYS, we set l=12 and
others set l=3, which is due to the existence of link
aggregation (many device pairs aggregate 4 physical
links).

(2) Real configurations of Internet2 network running ISIS,
from Config2Spec [25]. The network consists of 10
routers and 18 links.

(3) Synthesized configurations for three WAN networks
running BGP or OSPF, from Config2Spec [25]. The
BGP (OSPF) datasets consist of small, medium and large
topologies, which are 33 (48), 70 (85), and 158 (189)
routers (links), respectively.

All experiments run on a Linux server with two 12-core
Intel Xeon CPUs @ 2.3GHz and 256G memory.

A. Scalability of Mining Low-Level Specification

We use NetMiner and the other three tools to mine specifica-
tions from the six datasets. The properties we consider include
reachability, waypoint, and load balancing. Since Tiramisu can
only verify reachability, we only mine reachability specifica-
tion for Tiramisu. The bound on maximum link failures is set
to l = 3. For the DC1 and DC2, we use the dataset W/O
ALL, since the other tools cannot correctly process them. We
don’t run Tiramisu on DC1 and DC2 because of configuration
parsing issues.

Fig 13 reports the running time. NetMiner is 2 to 5
orders of magnitude faster than the Property-Aggregation
approach (Batfish+Delta-net), which cannot finish within 2
days, 6 to 16× faster than the Scenario-Aggregation approach
(Tiramisu), and 5 to 10× faster than Property-Scenario-
Aggregation approach (Config2Spec).

Note that this experiment is not to emphasize the improved
performance of NetMiner. Instead, our focus here is to show
that NetMiner does not trade off the scalability for the fidelity,
although we use the pure simulation-based verifier.

Mining specifications on the real datasets. Only NetMiner
can support the real configurations for DC1 and DC2. As
shown in Table III, the execution time does not change
significantly. For DC1, the time for W/ACL PHYS becomes
even faster. The reason is the connections between some
devices aggregate 8 or 16 links, making a large number of
failure scenarios invalid.

B. Microbenchmark of Mining Low-Level Specification

We show how GSA reduces the number of simulations, and
how FTM reduces the time of one-shot simulation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 13

Fig. 13. Time to mine specifications for reachability, waypoint, and load
balancing. Here, since PA cannot run to complete within a day, we report the
estimated time based on the average time for a single failure scenario and the
total number of failure scenarios.

TABLE III
TIME FOR NETMINER TO MINE SPECIFICATIONS FROM DC1 AND DC2

NETWORKS.WE SET l = 3 FOR THE DATASETS WITHOUT LINK
AGGREGATION (PHYS) AND l = 12 FOR THE DATASET WITH

PHYS

General Scenario Aggregation. We compare the compu-
tation cost of different methods, in terms of the number of
failure scenarios to simulate (for PA and NetMiner), and the
number of properties to check (for SA). As shown in Fig
14, NetMiner reduces the number of simulations by 2 to 3
orders of magnitude, compared with PA. The performance
gap enlarges when modeling the physical topology, such as
W/ACL-PHYS, because when considering link aggregation,
we can reduce a large number of invalid failure scenarios.
The number of simulations of NetMiner is 1 to 2 orders of
magnitude less than the number of properties checked by SA.
The effectiveness of GSA is further shown in Fig 15. After
identifying all hot links, the property trimming reduces the
number of unverified properties by 3 to 6×, while failure
scenarios aggregation further reduces the number of scenarios
by 1 to 2 orders of magnitude.

In addition, property trimming is only effective with low
tolerance level, because for high tolerance property, both
trimming method inside property trimming fail at this point.

Fast Topology Mapping. We next show the effectiveness
of fast topology mapping (FTM). Specifically, we compare
the running time for FTM and Batfish to generate Layer-3
topology when Layer-1 links are failed. FTM is 5 to 6 orders
of magnitude faster than Batfish in Table IV.

To fairly demonstrate the performance improvement of
FTM, we compare the total time to check all scenarios using
Batfish and NetMiner on two DCN datasets. On DC1, Net-
Miner is consistently 3.5× faster, while on DC2, the speedup
ranges from 356.9× to 357.4×.

C. Fidelity of Low-Level Specification

We use the two real data center configurations to evaluate
the fidelity of NetMiner. Specifically, we demonstrate Net-
Miner can avoid incorrect results due to missing features like
ACLs, etc., or not modeling physical link failures.

Fig. 14. The number of simulations (for PA and NetMiner) or verifications
(for SA) of different methods.

TABLE IV

TIME FOR COMPUTING LAYER-3 TOPOLOGY AND SIMULATING THE CON-
TROL PLANE. HERE, l IS THE NUMBER OF FAILED LAYER-1 LINKS

TABLE V

TIME COMPARISON FOR CHECKING ALL SCENARIOS, INCLUDING COM-
PUTING THE LAYER-3 TOPOLOGY AND SIMULATING THE CONTROL

PLANE

Fig. 15. Comparison of the number of failure scenarios, after applying hot
links identification, property trimming, and failure scenarios aggregation.

Rich protocol features. NetMiner offloads the routing
model to the simulation-based control plane verifiers, so that
it can easily support rich protocol features as the mature
verifiers do, e.g., Batfish. To confirm this, we run Config2Spec
and NetMiner on DC1 without ACL rules, both of which
return a specification with 127079 reachability properties.
After adding ACLs into the configurations, NetMiner returns
126848 reachability properties, because ACL rules block some
traffic, while Config2Spec still returns the same result. We
manually confirmed that the reduction in reachability proper-
ties is indeed due to the existence of ACLs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NETWORKING

Fig. 16. Distribution of the number of properties for different tolerances
between considering physical link aggregation (W/ACL-PHYS) and not
considering physical link aggregation (W/ACL).

Fig. 17. The subnet clusters for Bics-BGP dataset from real topology
when deriving the high-level specification for reachability. Each device only
configures one edge subnet. So we use the device to represent the subnet on
it. The subnets of light (dark) nodes belong to subnet cluster c1(c2).

Real failure model. As shown in Fig 16, most properties
have a high tolerance value when considering physical links
rather than logical (Layer-3) links. That is, using existing
control plane verifiers [1], [3], [4], [5], [6], one may under-
estimate the failure tolerance of reachability properties. Note
that the property with mt = 3 in W/ACL may have a higher
tolerance value, because we set the upper tolerance limit.

D. Validity of High-Level Specification

Case study 1. We illustrate that IC has physical sig-
nificance and can help operators diagnose faults in anno-
tations. Specifically, annotations such as “external om” or
“pod cascaded storage” is configured on ports to explain the
purposes of their corresponding subnets. We say an annotation
is consistent if all subnets with the annotation belong to
a single subnet cluster calculated by IC. Then, we use the
following metric of consistency ratio to measure how well the
subnet cluster computed by IC aligns with the real purpose.

consistency ratio =
of consistent annotations

of all annotations

For our DC1 dataset, 40 out of these 42 annotations are
consistent, while for 2 annotations, their subnets span multiple
subnet clusters. This results in a consistency ratio of 40/42 =
95.2%. Among 2 inconsistent annotations, 24 subnets are
annotated with a description of “pod cascaded storage”, a
type of storage service in the cloud datacenter. 14 of these
subnets fall in one cluster and the other 10 fall in another

Fig. 18. The low-level specification and the high-level specification of
reachability intents about the subnet of light and dark nodes in Fig. 17.

Fig. 19. Comparison of the number of lines between the low-level specifi-
cation and the high-level specification. ‘Reach’ represents a specification that
contains only reachability, while ‘All’ represents a specification that includes
reachability, waypoints, and load balancing.

Fig. 20. Comparison of the average number of characters per line between
the low-level specification and the high-level specification. ‘Reach’ represents
a specification that contains only reachability, while ‘All’ represents a speci-
fication that includes reachability, waypoints, and load balancing.

one. We confirm with the operators that this is an error in the
annotation since these two groups of subnets actually provide
different services. For these 24 subnets, 14 of subnets are
responsible for high-frequency access data, while the other 10
subnets handle low-frequency access data. Finally, our high-
level specification has only 608 lines, much smaller than the
original low-level specification, which has 51,631 lines.

Case study 2. In the above, we consider data center
networks whose topologies are quite regular. To study whether
IC also works for networks with irregular topologies, we
experiment with the Bics-BGP dataset synthesized by [25] on
a real WAN topology. The synthesized configurations ensure
a simple policy of all-pair reachability, and thus the values
of failure tolerance are entirely determined by the topology.
Fig. 17 shows cluster 1 (2) marked by light (dark) node. For
the low-level specification, we need 13 × 12 = 156 intents
to describe the reachability between the 13 subnets included
in the light and dark nodes. In contrast, for the high-level
specification, we only need 6 intents, as shown in Fig. 18.
Finally, with 4093 lines of the low-level specification, IC
derives 134 lines of the high-level specification.

Semantic equivalence. The intent compression method
should ensure that the high-level specification and the low-level
specification are semantically equivalent. To check whether

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

KANG et al.: NETWORK SPECIFICATION MINING WITH HIGH FIDELITY, SCALABILITY, AND READABILITY 15

Fig. 21. The trend curve of the number of lines of exception intents, summary intents and total lines of the high-level specification with respect to the
increasing distance threshold. The gray dashed line represents the threshold selected by Intent Compression, which is the minimum value. Since the OSPF
dataset and DC2 exhibit the same trend, we omit them for clarity.

Fig. 22. The calculation time of Intent Compression (IC).

this requirement is met, we unfold the high-level specification
into a low-level specification, and compare it to the original
low-level specification. We confirm that they match exactly on
all of our datasets.

E. Readability of High-Level Specification

Number of lines. As shown in Fig. 19, the number of
lines of the high-level specification is one to two orders of
magnitude smaller than that of the low-level specification,
for different types of properties (reachability, waypoint, load
balancing), protocols (OSPF, BGP), and networks (WAN and
DCN).

Number of characters. As shown in Fig. 20, the average
number of characters per line in the high-level specification is
3× less than that of the low-level specification.

Threshold selection. In this experiment, we show how IC
can find a threshold that minimizes the total number of intents.
Fig. 21 shows that as the distance threshold increases, the
number of lines of summary intents and exception intents
is non-increasing and non-decreasing, respectively. Therefore,
we can always find a threshold that minimizes their sum, i.e.,
the total number of intent, as shown by the dashed lines.

F. Performance of Deriving High-Level Specification

Fig. 22 shows the computation time of Intent Compression.
For all different types of properties, protocols, and networks,
Intent Compression finishes in minutes. This indicates that
the time required to generate the high-level specification is
negligible compared to the time spent generating low-level
specifications.

VII. CONCLUSION

We propose NetMiner, a network specification mining tool
with high scalability, fidelity and readability. NetMiner is built
upon pure simulation-based verifiers, so as to abstract away

all the vendor-specific models. NetMiner designs (1) a General
Scenario Aggregation to analyze the property-related scenarios
only, and (2) a Fast Topology Mapping that incrementally
transforms Layer-1 topology to Layer-3 topology, (3) an Intent
Compression that compresses the intents in the specification
into a concise format. We evaluate NetMiner on real topologies
and compare it with the state-of-the-art. Results show that
NetMiner can scale to large networks while supporting rich
protocols and real failure models, and reduce the number of
lines in the specification to the hundreds.

REFERENCES

[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
multilayer network verification,” in Proc. 17th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2020, pp. 201–219.

[2] S. Prabhu, K.-Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in Proc. 17th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2020, pp. 953–967.

[3] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev,
“Probabilistic verification of network configurations,” in Proc. Annu.
Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., Jul. 2020, pp. 750–764.

[4] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router
execution,” in Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 336–349.

[5] F. Ye et al., “Accuracy, scalability, coverage: A practical configuration
verifier on a global WAN,” in Proc. Annu. Conf. ACM Special Interest
Group Data Commun. Appl., Technol., Architectures, Protocols Comput.
Commun., Jul. 2020, pp. 599–614.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2017, pp. 155–168.

[7] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in Proc. ACM
SIGCOMM Conf., Aug. 2016, pp. 300–313.

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-
level configurations,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp.
328–341.

[9] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide
configuration synthesis,” in Proc. 29th Int. Conf. Comput. Aided Verifi-
cation (CAV). Heidelberg, Germany: Springer, Jul. 2017, pp. 261–281.

[10] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “NetComplete:
Practical network-wide configuration synthesis with autocompletion,” in
Proc. 15th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2018,
pp. 579–594.

[11] K. Subramanian, L. D’Antoni, and A. Akella, “Synthesis of fault-tolerant
distributed router configurations,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 2, no. 1, pp. 1–26, Jan. 2018.

[12] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Scalable verification of border gateway protocol config-
urations with an SMT solver,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program., Syst., Lang., Appl., Oct. 2016, pp. 765–780.

[13] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “AED: Incre-
mentally synthesizing policy-compliant and manageable configurations,”
in Proc. 16th Int. Conf. Emerg. Netw. Exp. Technol., Nov. 2020,
pp. 482–495.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON NETWORKING

[14] A. Fogel et al., “A general approach to network configuration analysis,”
in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 469–483.

[15] H. H. Liu et al., “CrystalNet: Faithfully emulating large production
networks,” in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017,
pp. 599–613.

[16] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpre-
tation of distributed network control planes,” in Proc. ACM Program.
Lang., 2019, vol. 4, no. POPL, pp. 1–27.

[17] P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and
H. Li, “Differential network analysis,” in Proc. USENIX NSDI, 2022,
pp. 601–615.

[18] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “APKeep:
Realtime verification for real networks,” in Proc. 17th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2020, pp. 241–255.

[19] A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-Net: Real-time
network verification using atoms,” in Proc. USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2017, pp. 735–749.

[20] H. Yang and S. S. Lam, “Real-time verification of network proper-
ties using atomic predicates,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 887–900, Apr. 2016.

[21] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in Proc. 1st Workshop
Hot Topics Softw. Defined Netw., Aug. 2012, pp. 49–54.

[22] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[23] S. Jain et al., “B4: Experience with a globally-deployed software
defined wan,” in Proc. ACM SIGCOMM Conf. (SIGCOMM), Aug. 2013,
pp. 3–14.

[24] N. Farrington and A. Andreyev, “Facebook’s data center network
architecture,” in Proc. Opt. Interconnects Conf., May 2013, pp. 49–50.

[25] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev,
“Config2Spec: Mining network specifications from network
configurations,” in Proc. 17th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2020, pp. 969–984.

[26] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed.,
Boston, MA, USA: Pearson, 2010.

[27] N. Kang, P. Zhang, H. Li, S. Wen, C. Ji, and Y. Yang, “Network
specification mining with high fidelity and scalability,” in Proc. IEEE
31st Int. Conf. Netw. Protocols (ICNP), Oct. 2023, pp. 1–11.

[28] Uptime Institute. (2021). Annual Outage Analysis Report 2021.
[Online]. Available: https://uptimeinstitute.com/resources/research-and-
reports/annual-outage-analysis-2021

[29] (2023). Annual Outage Analysis Report 2023. [Online]. Avail-
able: https://uptimeinstitute.com/resources/research-and-reports/annual-
outage-analysis-2023

[30] X. Xu et al., “Relational network verification,” in Proc. ACM SIGCOMM
Conf., Aug. 2024, pp. 213–227.

[31] M. Brown, A. Fogel, D. Halperin, V. Heorhiadi, R. Mahajan, and
T. Millstein, “Lessons from the evolution of the batfish configuration
analysis tool,” in Proc. ACM SIGCOMM Conf., Sep. 2023, pp. 122–135.

[32] A. Kheradmand, “Automatic inference of high-level network intents
by mining forwarding patterns,” in Proc. Symp. SDN Res., Mar. 2020,
pp. 27–33.

[33] Annual Outage Analysis Report 2024, Uptime Institute, Seattle, WA,
USA, 2024. [Online]. Available: https://uptimeinstitute.com/resources/
research-and-reports/annual-outage-analysis-2024

[34] (2025). Annual Outage Analysis Report 2025. [Online]. Avail-
able: https://uptimeinstitute.com/resources/research-and-reports/annual-
outage-analysis-2025

[35] L. Huang and L. Lu, “Segmentation of ischemic stroke lesion based on
long-distance dependency encoding and deep residual U-Net,” J. Com-
put. Appl., vol. 41, no. 6, p. 1820, 2021.

[36] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
Acm SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[37] R. Soulé et al., “Merlin: A language for provisioning network resources,”
in Proc. 10th ACM Int. Conf. Emerg. Netw. Experiments Technol., Dec.
2014, pp. 213–226.

[38] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 29–42, 2015.

[39] M. Aigner, “A characterization of the bell numbers,” Discrete Math.,
vol. 205, nos. 1–3, pp. 207–210, Jul. 1999.

[40] F. Nielsen, “Hierarchical clustering,” in Introduction to HPC With MPI
for Data Science. Cham, Switzerland: Springer, 2016, pp. 195–211.

[41] A. Bierman and K. Jones, Physical Topology Mib, document RFC2922,
2000.

[42] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.
Probab., Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[43] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
2nd Int. Conf. Knowl. Discovery Data Mining, 1996, pp. 226–231.

[44] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” ACM SIGMOD
Rec., vol. 28, no. 2, pp. 49–60, Jun. 1999.

[45] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[46] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007.

[47] W. Pang, S. Panda, J. Amjad, C. Diot, and R. Govindan, “CloudCluster:
Unearthing the functional structure of a cloud service,” in Proc. 19th
USENIX Symp. Networked Syst. Design Implement. (NSDI), 2022,
pp. 1213–1230.

[48] R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method,” Comput. J., vol. 16, no. 1, pp. 30–34, Jan. 1973.

[49] A. Abhashkumar, A. Gember-Jacobson, and Akella. (2020). Tiramisu
Source Code. [Online]. Available: https://github.com/anubhavnidhi/
batfish/tree/tiramisu

[50] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev. (2020).
Config2Spec Source Code. [Online]. Available: https://github.com/nsg-
ethz/config2spec

Ning Kang received the B.E. degree in computer science from Chang’an
University in 2021. He is currently pursuing the Ph.D. degree with the School
of Computer Science and Technology, Xi’an Jiaotong University, Xi’an,
China. His research interests include network intent mining and verification.

Peng Zhang (Member, IEEE) received the Ph.D. degree in computer science
from Tsinghua University in 2013. He was a Visiting Researcher with The
Chinese University of Hong Kong and Yale University. He is currently
a Professor with the School of Computer Science and Technology, Xi’an
Jiaotong University, Xi’an, China. He is also with the MOE Key Laboratory
for Intelligent Networks and Network Security. His research interests include
verification and measurement.

Hao Li (Member, IEEE) received the Ph.D. degree in computer science from
Xi’an Jiaotong University in 2016. He is currently an Associate Professor with
the School of Computer Science and Technology, Xi’an Jiaotong University.
He is also with the MOE Key Laboratory for Intelligent Networks and
Network Security. His research interests include programmable networks and
network functions.

Sisi Wen received the B.E. degree from Taiyuan University of Technology
in 2020 and the M.S. degree from Xi’an Jiaotong University, China, in 2023.
He joined the Network Engineering Team at ByteDance in 2023.

Chaoyang Ji received the master’s degree from Dalian University of Tech-
nology. He is currently with the Cloud Computing and Networking Innovation
Laboratory, Huawei Cloud Computing Technology Company Ltd. His research
interests include cloud networking and large-scale AI training and inference.

Yongqiang Yang received the master’s degree from Beihang University. He
is currently the Head of the Cloud Computing and Networking Innovation
Laboratory, Huawei Cloud Computing Technology Company Ltd. His research
interests include cloud networking and large-scale AI training and inference.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on October 09,2025 at 12:13:38 UTC from IEEE Xplore. Restrictions apply.

