
Network Specification Mining with High Fidelity
and Scalability

Ning Kang, Peng Zhang, Hao Li, Sisi Wen

Xi’an Jiaotong University

Chaoyang Ji, Yongqiang Yang

Huawei Cloud Computing Technologies Co., Ltd.

Abstract—Network specification, which describes what an
existing network is designed for, can help operators better
understand and manage their networks, and is a critical pre-
condition for network verification and synthesis tools to work.
Mining specification with existing tools either cannot scale to
large networks, or scale better at a cost of sacrificing fidelity. This
paper presents NetMiner, which can simultaneously achieve high
scalability and fidelity. The key idea of NetMiner is to use off-the-
shelf network simulators to compute routes, and then check prop-
erties with data plane verifiers, so as to achieve a high fidelity. At
the same time, NetMiner improves the scalability by identifying
relevant failure scenarios, and aggregating them to significantly
reduce the number of needed simulations. This process is solely
based on the routes returned by the simulators and therefore
preserving fidelity. Experiments using real configurations from a
large cloud service provider and synthetic configurations show
that NetMiner is about 10 times faster than the state-of-the-art.

I. INTRODUCTION

Managing large-scale networks is hard, considering the

network configurations are becoming more and more com-

plex. To simplify the management task, network configuration

verification and synthesis have been studied in the past decade,

which can verify the correctness of existing configurations [1]–

[7], generate the configurations from scratch [8]–[13], and

update the configurations based on the high-level intents [14].

One critical prerequisite of realizing the above vision is the

network specification, e.g., reachabilities between the prefixes

and ports, waypoints that packets should traverse, and the

number of link/node failures that can be tolerated.

Unfortunately, such specification is usually missing or in-

complete in practice. The reason is that instead of building

a clean-slate fresh network, operators tend to construct the

network based on existing configurations. And through the

evolution over the years, it is too harsh for the operator to man-

ually compose the specifications. This motivates the problem

of network specification mining: how to automatically extract

the network specification from the existing configurations?

One approach to network specification mining is to simulate

or emulate the control plane with control plane simulators

or emulators [15]–[18] to generate the routes (RIBs) and

forwarding rules (FIBs), and check whether all possible can-

didate properties (e.g., all-pair reachability) hold with data

plane verifiers [19]–[22]. However, such simulation-based ap-

proaches suffer from the scalability problem when considering

the failure tolerance: one needs to simulate the network a lot of

times for different failures, and each simulation is considerably

costly. We break down this problem into the following two

factors. (1) The number of simulations. To extract the com-

plete specification, the verifier needs to simulate each failure

scenario, and check all properties on it. For example, to verify

a set of properties on a network with L links, one has to

enumerate all scenarios that any l of L links fail. This results

in O(Cl
L) simulations in total, that is, O(108) simulations

when l = 3 and L = 1000. (2) The cost of each simulation.

To achieve high fidelity, besides modeling the Layer-3 route

computation, the simulation must also consider the semantics

of other layers. For example, the simulation should model

the Layer-2 computation (VLAN, STP, etc.), to account for

physical Layer-1 topology. This makes the simulation much

more expensive. Considering there are 100 nodes, each with

100 physical/virtual ports, and each port is configured to allow

2000 VLANs, existing simulator will take O(107) operations

to compute the Layer-3 topology. The factual cost of the

mining task is the product of the above factors, which is

obviously not affordable in real networks.

On the other hand, mining specification with analysis-based

verifiers might mitigate the scalability problem, but sacrifice

fidelity: instead of generating the RIBs and FIBs through sim-

ulation, the analysis-based verifiers could check the properties

and the corresponding failure tolerance levels based on control

plane models [1], [3], [6], [23]. Although the one-time analysis

takes more time than simulation, this approach only requires

O(S2) or even fewer rounds of verifications (S is the number

of subnets), making it much more scalable than the simulation-

based approach. However, the models used by analysis-based

verifiers abstract away some important features, and therefore

cannot faithfully reflect the behaviors of real network devices.

We believe fidelity should be the top concern, because one

missing property can cause false negatives in the verifiers

and/or fail the critical applications if used in synthesizers. This

urges us to use the simulation-based verifier for the highest-

level fidelity, and leaves the key question: can we mine the

specification with high scalability and without loss of fidelity?

To this end, we need to conquer the aforementioned two

scalability factors. By revisiting the simulation workflow, we

have the following observations.

Observation 1: A limited number of failure scenarios are

related to a given property. Consider two properties with

the forwarding paths A → B → C and A → B → D,

respectively. It is easy to see that when l = 1, we only need

to check three failure scenarios: failure of BC for the first,979-8-3503-0322-3/23/$31.00 ©2023 IEEE

failure of BD for the second, and failure of AB for both.

That is, other possible failure scenarios, say failure of AD, are

irrelevant to all candidate properties, and thus can be skipped.

We emphasize this principle could eliminate a considerable

number of scenarios, because when l is relatively large, say

l = 2, each property can only relate to a handful number of

scenarios. As such, most scenarios can be skipped without

simulations.

Observation 2: Layer-1 modeling dominates the simulation.

To maintain high fidelity, the specification mining must con-

sider physical failure scenarios at Layer-11, instead of logical

failure scenarios at Layer-3. We observe that computing the

Layer-3 topology is surprisingly more costly (∼ 200× accord-

ing to our experiments §V-B) than computing routes based

on Layer-3 topology. The reason is mostly due to the large

number of physical ports, each configured to allow a large

number of VLANs. As such, reducing the cost of Layer-1

modeling could save considerable time during one simulation.

With the above observations, we propose NetMiner, a tool

for mining network specification, to address this problem.

NetMiner chooses the simulation-based approaches (e.g., Bat-

fish) such that it will not sacrifice any fidelity. Specifically,

NetMiner makes the following contributions, to reduce the

number of scenarios and the cost of the one-time simulation.

Contribution 1: General Scenarios Aggregation. Net-

Miner designs a General Scenarios Aggregation method

that eliminates the irrelevant failure scenarios. First, Net-

Miner identifies the property-related failure scenarios in a

general way. We say a scenario relates to a property if it

contains at least one link from the forwarding path (traversed

by the packets related to the property) or the routing path

(traversed by the routes matched by the packets); otherwise,

the failure scenario is irrelevant to the property. Then, Net-

Miner derives both the forwarding path and routing path based

solely on the routes returned by the simulator, rather than a

control plane model. Finally, NetMiner aggregates the failure

scenarios shared by different properties, largely eliminating the

irrelevant scenarios. Compared to the enumeration approach,

the aggregation reduces the number of failure scenarios by 2

to 3 orders of magnitude.

Contribution 2: Fast Topology Mapping. NetMiner designs

a Fast Topology Mapping method, which can rapidly generate

the Layer-3 topology from the Layer-1 topology. Initially, we

construct a bidirectional map between the Layer-1 topology

and the Layer-3 topology, which only needs to be built once.

When we need to fail Layer-1 links, we can query the map

to identify those Layer-3 links that use the Layer-1 links, and

determine whether these Layer-3 links will fail. This avoids

the need of rebuilding the Layer-3 topology from scratch, each

time when the Layer-1 topology changes. Compared with the

baseline approach generating Layer-3 topology from scratch

used by Batfish, our method can significantly improve the

1We use Layer-1 to represent Layer-1 and Layer-2, and thus the logic of
Layer-1 contains physical links aggregation, VLANs, etc.

speed of generating Layer-3 topology by 5 to 6 orders of

magnitude.

Based on real configurations from a large cloud service

provider, and synthetic configurations from prior works, we

show NetMiner can mine the specification 3 to 4 orders

of magnitude faster than the simulation-based method, and

surprisingly, 10 × faster than the state-of-the-art analysis-

based method.

II. MOTIVATION

In this section, we first motivate the problem of specifica-

tion mining (§II-A). Then we discuss why simply leveraging

existing methods cannot fulfill our goals (§II-C). Finally, we

formally define the problem of specification mining from the

configurations (§II-B).

A. Why Mining Specification

Enabling network changes verification. Verifying a config-

uration has the desired effect only requires analyzing targeted

header space, e.g., reachability between two subnets. However,

checking for unintended side effects is harder, because changes

may impact seemingly unrelated header spaces and hidden

failure scenarios [4]. Moreover, compressing redundant con-

figurations needs to verify the consistency of the configurations

before and after compression, which usually needs to verify

all properties across multiple failure scenarios.

Helping human understanding. Network operators often

complain about inheriting an already working legacy network,

whose intents are hard to tell [24]. The complexity of routing

protocols makes it challenging for operators to understand the

network intents from low-level configurations. Automatically

generating the specification of a network helps operators to

better understand what the network is currently doing, and

makes network update easier.

Facilitating intent-based networking. Current network man-

agement relies heavily on humans. Consequently, manual oper-

ations not only increase the burden of administrators, but also

increase the network security risks. Generally, inferred intents

can be used as input for any intent-based networking tool,

e.g., automatic configuration synthesis [8]–[12]. In addition,

automatic configuration mining enables automatic migration,

e.g., transparent migration from legacy networks to SDN, other

vendor networks or cloud platforms [25].

B. Problem Definition

The following formulates the problem of network specifica-

tion mining. The formulation is inspired by Config2Spec [23],

but differs in how failures are modeled.

Failure model. The network we consider has a set of nodes

(physical switches or routers) N , and a set of physical links

links connecting the ports of two nodes. A small number of

nodes or links are allowed to fail, due to hardware or software

failures of nodes or ports. We define a link failure scenario as

a partition of links into (linksup, linksdown), which consist

of links that are up and down, respectively. Node failures can

TABLE I
Network properties (s, n, w are routers, d is prefix.)

Property Description

reachability(s,n,d) packets in d sent from s can reach n

waypoint(s,n,w,d) packets in d sent from s to n, passing through w

loadbalancing(s,n,d,m) packets in d sent from s to n, along m paths

be viewed as failing all the links that are connected to the ports

of the nodes. Without extra explanation, the rest of the paper

will use scenario to denote a link failure scenario. Note that

our model considers failures of physical (Layer-1) links, rather

than logical (Layer-3) links, as considered by Config2Spec and

control plane verifiers like NetDice, etc. This makes the failure

model more realistic.

Intent and Property. An intent I is defined as p : t, where p

is a property, and t is the failure tolerance of p. Table I lists

the properties considered in this paper, including reachability,

waypoint and load balancing. The failure tolerance t is an

integer representing the number of link failures. For example,

Reachability(s, n, d) : 3 means packets of d sent from source

s can reach destination n when there are no more than 3 link

failures. We use the notation mt(p) to denote the maximum

failure tolerance of a specific property p. Given network

configurations C, its specification SpecC is a collection of

intents that are defined as:

SpecC =
{

p : mt(p)|p ∈ PC
}

(1)

where PC is the set of all properties that hold without node

or link failures. Note here, PC can also be limited to a subset

of all properties, which operators care about.

We usually consider a small number (say less than 6) of

link failures, which is mostly enough for operators (when

not accounting for link aggregations). Therefore, we have the

following compromised version for specification:

SpecCL =
{

p : min(L,mt(p))|p ∈ PC
}

(2)

where L is the bound on the maximum number of link failures.

The problem of network specification mining is defined as

follows.

PROBLEM 1. Given network configuration C and a bound L

of maximum failures, find the specification SpecCL .

C. Limitations of Existing Methods

Except for mining specification from the configurations, one

can also mine specification from (1) network states (e.g., FIB

or RIB) with data plane verifiers [19], [20], or (2) network

behaviors (e.g., network traffic) [24], [26]–[29]. However,

these methods may miss intents like “A subnet is always

reachable under a single link failure”. In this paper, we focus

on mining from configurations, as this method can reveal the

complete set of properties.

Property-Aggregation Approaches. Most simulation-based

verifiers, e.g., Batfish [15], CrystalNet [16], ShapeShifter [17],

Plankton [2] and DNA [18] can generate FIBs and RIBs for

a certain scenario, and the data plane verifiers [19]–[21] can

S
c
a
la
b
il
it
y

Fidelity

 NetDice

 Tiramisu

Minesweeper

 Config2Spec
 SRE Hoyan

 NetMiner

Batfish

CrystalNet

 Analysis-based
Simulation-based

 Hybrid-based

(Simulation & Analysis)Emulation-based

PSA

SA PA
DNA

Plankton

ShapeShifter

PA : Property-

Aggregation Prototype

SA : Scenario-

Aggregation Prototype

PSA : Property-Scenario-

Aggregation Prototype

Fig. 1. The tools available for mining specification.

then rapidly check multiple (all) candidate properties on that

scenario. Such a prototype aggregates the properties but has

to enumerate all failure scenarios, whose number amounts to

O(Cl
L), where l is the failure tolerance level and L is the

number of links.

Scenario-Aggregation Approaches. Analysis-based verifiers

like Tiramisu [1], NetDice [3] and Minesweeper [6] can check

if one certain property holds for all failure scenarios. Building

upon these tools avoids the link failure enumeration, but in

turn needs to enumerate the properties, which leads to O(S2)
model calculations in an S-subnet network. More importantly,

all these works have a lower fidelity than the simulation-based

approach. For example, Minesweeper has not modeled features

like multiple virtual routing and forwarding (VRFs) and multi-

hop BGP neighbor; Tiramisu does not support features like

protocol- or port-based packet filters, packet filters impacting

route advertisements and route filters matching multiple com-

munity tags.

Property-Scenario-Aggregation Approaches. Analysis-

based methods like Hoyan [5] and SRE [4] combine

header space and failure space to improve the scalability of

verification in larger and complex networks. Config2Spec [23]

is the closest work to us, which iterates over the simulation-

based verifier (Batfish [15]) and analysis-based verifier

(Minesweeper [6]) by the predicted cost. These three tools

can analyze multiple properties over multiple scenarios.

However, such scalability improvement comes from the

control plane models used in the analysis-based verifiers.

Therefore, they all suffer from fidelity defects. For example,

all the above approaches only consider logical failures, i.e.,

failure of Layer-3 links, and as a result, would over- or

under-estimate the failure tolerance of properties. Taking

Fig. 2(a) as an example, which is based on Layer-3 topology.

Since there are two paths from r1 to d1, the property p1
has a failure tolerance mt = 1; However, if considering the

Layer-1 topology shown in Fig. 2(b), p1 should have a failure

tolerance mt = 0. The reason is that r1 can only reach d1
via VLAN 1 through the path r1 → s1 → r3.

To consider physical link failures, we need to have a way

to determine which Layer-3 links would be affected once

physical links fail. This is not easy since the mapping between

r1

r2

d1:1.2.1.0/24 d2:1.3.1.0/24

r3 r4

vlanif1:1.1.1.0/31

vlanif1:1.1.1.1/31

vlanif2:1.1.2.0/31

vlanif2:1.1.2.1/31

Eth:1.1.3.1/31

Eth:1.1.3.0/31

vlanif3:1.1.3.1/31

vlanif3:1.1.3.0/31

p1(Reachability(r1, d1)) : mt(p1)=1

p2(Reachability(r3, d2)) : mt(p2)=0

r1

s1

r2

vlan1

vlan2 3 3

3 r4s2

vlan3

p1(Reachability(r1, d1)) : mt(p1)=0

p2(Reachability(r3, d2)) : mt(p2)=5

(a) from Layer-3 topology (b) from Layer-1 topology

Link aggregation

3r3 s3

Fig. 2. An example illustrating the differences when mining specifications
based on Layer-1 topology and Layer-3 topology. Subnets d1 and d2 are
attached to router r3 and router r4, respectively. All devices are in the same
OSPF domain and the weights of all links are the same.

Layer-1 links and Layer-3 links is complicated. For example,

failing Layer-1 link s1− s3 affects two Layer-3 links r1− r3
and r2− r3, but failing Layer-1 link r3− s3 does not affect

any Layer-3 links.

In contrast to all previous works, NetMiner aims to

achieve Property-Scenario-Aggregation with pure simulation-

based verifiers.

III. OVERVIEW

In this section, we first show the workflow of NetMiner and

reveal the technical challenges (§III-A). Then we explain how

to achieve high scalability with General Scenarios Aggregation

(§III-B) and Fast Topology Mapping (§III-C), without loss of

fidelity.

A. Workflow of NetMiner

The workflow of NetMiner is shown in Fig. 3, which takes

as the input the network configuration C, NetMiner outputs

the formal specification SpeccL that consists of property p and

the corresponding failure tolerance level mt. NetMiner de-

couples the vendor-dependent behaviors (driver) and vendor-

independent behaviors (core), which ensures its fidelity.

In its core layer, NetMiner first calculates the initial property

space P c based on the configuration and physical topology to

form a set of unverified properties (UP) (➀).

NetMiner then verifies UP with different failure tolerance

levels, starting from an all-link-up Layer-1 scenario, i.e., l =
0. Then, NetMiner maps the current Layer-1 scenario (L1s)

into the Layer-3 scenario (L3s) (➁), which, together with the

configurations, would be fed into the simulation-based control

plane verifier. The simulation produces a concrete data plane

for L3s (➂), and then the data plane verifier can check whether

the whole UP is satisfied under L3s, i.e., Property-Aggregation

(➃).

If UP does not hold, NetMiner would update the tolerance

of the property in UP with current l and add UP into the

specification.

Otherwise, NetMiner produces the failure scenarios for the

next tolerance level. In doing so, NetMiner first calculates

the hot links (➄), i.e., links that form the forwarding path

and routing path, of L3s for each property in UP. These

links form a property-related Layer-3 scenarios, which will

be further mapped back into Layer-1 scenarios (➅). Through

Layer-1

Scenarios

Layer-3

Scenarios

Layer-3

Hot Links

Layer-1

Hot Links

Data Plane

Data Plane

Verifier

Fast Topology MappingFailure Scenarios

Aggregation

Mapping

Mapping
Hot Links

Identification

General Scenarios Aggregation

Control Plane Simulation / Emulation

Unverified

Properties

Physical

Topology
Configurations

Upper Bound

Tolerance L
Input

Formal

Specification
Output

+Configurations Fibs, Ribs

Driver NetMiner

1

2

3

4

56

Core

7

Fig. 3. The workflow of NetMiner.

this process, NetMiner identifies and aggregates the Layer-1

scenarios shared across the properties in UP. Finally, each

Layer-1 scenario from the aggregated scenarios becomes the

new L1s, and the properties related to it form the new UP (➆).

The mining process recursively iterates until l reaches L.

We highlight two technical challenges in this workflow.

First, when calculating the hot links, NetMiner must not

involve any vendor-dependent control plane behaviors to avoid

loss of fidelity, i.e., it should be based purely on the output

of the control plane (e.g., RIBs, FIBs). This is challenging

considering the complex recursive route resolution process,

the existence of static routes, and route reflectors, etc. Second,

Layer-1 and Layer-3 mapping is frequently invoked through

this process, which, as mentioned in §I, dominates the one-

time verification. NetMiner designs two key modules, General

Scenarios Aggregation (GSA) and Fast Topology Mapping

(FTM) for addressing the above two challenges. We present

these two modules with concrete examples in the following

sections.

B. General Scenarios Aggregation

Properties like reachability and waypoint cannot be held if

there do not exist any physical links from the forwarding path

and the routing path. We call links that form these two paths

hot links. The failure scenarios that do not contain any hot

link are considered irrelevant to the property.

Hot links identification. To identify all hot links, the straight-

forward way is to model the control plane behavior, including

importing or redistributing routes, filtering routes, selecting the

best routes, etc., to derive the related links of a property [3].

However, control plane behaviors are vendor-dependent, mak-

ing it hard to model them correctly. For example, different

vendors have different processes for selecting the best routes;

most vendors need a route to exist in the main RIB so that it

can be imported to BGP, while some vendors do not require

the existence of routes. Therefore, identifying the hot links

based on a control plane model can impact fidelity.

We observe that the vendor-dependent behaviors, i.e., route

propagation and best route selection, are already handled after

the simulators compute the routes, i.e., routing table. This

reveals the chance to trace forwarding paths and routing paths,

purely from the rules of the routing table, e.g., the routing

Subnet d

r5

r3

r4r2

s1

r1

Property p1(reachability(r1, d)):mt(p1)=3

Subnet d

r5

r3

r4r2

s1

r1

Property p2(reachability(r2, d)):mt(p2)=3

Subnet d

r5

r3

r4r2

s1

r1

Property p1 & Property p2

✗

✗

✗

✗

✗
✗

✗

✗

✗
✗

✗
✗

✗

✗

✗

✗

✗✗

✗

✗
✗ ✗

✗

✗ ✗

✗✗

(d) The failure scenarios of property p1 & p2(b) The failure scenarios of property p1 (c) The failure scenarios of property p2

Sampling 10

failure scenarios

Sampling 13

failure scenarios

Sampling 10

failure scenarios

...

.........

l=0

l=2

l=4

l=2

l=5

l=3

l=5

l=0

l=2

l=4

l=2

l=4

l=3

l=5

l=0

l=2

l=4

l=2

l=4

l=2

l=5

(a) The physical topology

3

2 r3

2

2

2

2

r2

s1

r1

3r4

vlan1

vlan2

Subnet d

r5

2

2

2

2

r2

s1

r1

3r4

3

r3

r5

2

2

2

2

r2

s1

r1

3r4

3

r3

r5

l=3

l=3

✗
✗

✗

Invalid failure

scenarios

Valid failure

scenarios

Fig. 4. An example of failure scenarios aggregation. The network contains five routers and one switch. The numbers on the links represent the number of
physical links aggregated. Device r1 and r4 are reachable via VLAN1 and device r2 and r4 are reachable via VLAN2.

Subnet d

OSPF

2

3

2

43 12

1

1

r4

r1 r2

r7

r3

r6

iBGP

eBGP

(a) An example of a network (The number in edges represent ospf cost).

r5

r5 engress policy :

local preference 0→200

r6 engress policy :

local preference 0→100

r2 static route : to r4

r3 is router reflector

r4

r1 r2 r3

r6r5 r4

r1 r2 r3

r6r5

✗

(b) Hot links of property p1 (c) Forwarding graph of failing r5-r2

Property p1:

Reachability(r1,d) Forwarding path

Routing path

d dr7 r7

r1→d

r7→r1.ip

Routing path
r5→r1.ip

Fig. 5. The network contains seven network devices and a directly connected
route to d exists on device r7. r5 and r6 have an eBGP neighbor relationship
with r7, respectively, while r3 is a route reflector. The remaining six devices,
except r7, are configured with the OSPF protocol.

last hop and the forwarding next hop. One critical point

through this process is that we need to model the routing

recursion semantics such as iBGP’s dependency on OSPF for

the completeness of hot links. We detail this algorithm in

§IV-A and prove it preserves the fidelity.

Failure scenarios aggregation. After identifying the hot links

for each property, NetMiner generates their corresponding

failure scenarios and simulates the control plane under each

failure scenario. However, directly simulating all failure sce-

narios for each separate property still results in a large number

of simulations. Here, we observe that many failure scenarios

are shared by multiple properties, and thus NetMiner first

aggregates them and simulates each of these failure scenarios

once, significantly reducing the total number of simulations.

Taking Fig. 4(a) as example, and consider two reachability

properties p1 (r1 → d) and p2 (r2 → d), with a bound

L = 3 on failure tolerance. Fig. 4(b) and (c) show the failure

scenarios that need to be analyzed for p1 and p2, respectively.

Without aggregation, we need to analyze 23 failure scenarios.

However, 7 out of these failure scenarios are shared by both

properties, and we can analyze them together without a single

simulation. As a result, the total number of simulations reduces

Layer-3 topology

r4r3

r1

r2

r1

r2

s1 r3 s3

Layer-1 topology

s2

(a) Birdirectional topology mapping

vlan2
vlan3

(b) Example of using topology mapping

✗

✗

✗ ✗

✓

FTM FTM FTM

vlan1

Fig. 6. An example of Fast Topology Mapping.

from 23 to 16.

In real cases, the reduction can be quite significant: Fig. 10

shows that failure scenarios aggregation can reduce the total

number of simulations by 1-2 orders of magnitude (see §IV-A

for details).

A walk-through example. We show an example in Fig. 5(a)

to illustrate how we identify the hot links, and hence reduce

the failure scenarios. We consider the reachability property p1
from device r1 to subnet d. (1) For forwarding paths, we start

from device r1, and find the next hop to d is r5 in BGP routing

table. Because this is a recursive route, we then find the next

hop on r1 to ipr5 is r2 in OSPF routing table and the next hop

of r2 to ipr5 is r4 in static routing table. With the same steps,

we finally get the forwarding paths as r1− r2− r4− r5− r7.

(2) For routing paths, we also start from device r1, we find

the routing last hop of r1 to d is r3 (the simulator could

provide this information) in BGP routing table. Then we find

the forwarding path from r3 to ipr1 is r3− r2− r1 in OSPF

routing table (the step is similar to (1)). We next know the last

hop of r3 to d is r5 in BGP routing table. We finally get the

routing path as r1−r2−r3−r5−r7. We calculate the hot links

in Fig. 5(b). In this example, the simulator helps us to model

a modified routing announcement, i.e., the simulator tells the

forwarding next hop of r1 to d is r5 instead of r6 (avoid

modeling vendor-dependent behavior). But we still need to

consider the vendor-independent routing recursion. As in Fig.

5(c), if we don’t consider routing recursion, the link r2− r5
would be ignored and actually affect the forwarding behavior.

C. Fast Topology Mapping

NetMiner avoids the re-computation of Layer-3 topology

using Fast Topology Mapping (FTM). It is based on two

TABLE II
Notations used for hot link identification.

Notations Meaning

Path(s, d) forwarding path from source s to prefix d.
Info(s, d) the best route for d on s, including next-hop and attributes.
H(s, d) set of hot links from source s to prefix d.
F (s, d) set of links whose failures will change Path(s, d).
R(s, d) set of links whose failures will change Info(s, d).

observations: (1) Each layer-3 link is associated with a few

number of Layer-1 links, and vice versa. (2) The semantics

of Layer-2, including VLAN, STP, etc., are relatively simple

(compared with Layer-3 route computation) Therefore, we

can construct a bidirectional map between Layer-1 topology

and Layer-3 topology, to avoid re-computing Layer-3 topology

from scratch each time a Layer-1 link is failed.

Initially, NetMiner constructs the Layer-3 topology based

on the Layer-1 topology, meanwhile computing two maps: one

from a Layer-1 failed link to a Layer-3 failed link, and one

from a Layer-3 hot link to a Layer-1 hot link. Then, each

time NetMiner needs to fail a Layer-1 link, it can quickly

generate the Layer-3 topology based on the first map. When

NetMiner has identified some Layer-3 hot links, it can use the

second map to obtain the corresponding Layer-1 hot links.

In real cases, the mapping can significantly accelerate the

simulation under failure scenarios, e.g., 5-6 orders of magni-

tude faster as shown in Table IV.

A walk-through example. We maintain bidirectional mapping

when constructing the Layer-3 topology with all Layer-1 links

up. This process only needs to be done once. As shown in Fig.

6(b), suppose one needs to fail a link s1−r3 at Layer-1, after

looking up in the mapping, both r1− r3 and r2− r3 will be

affected at Layer-3. Then we find that the paths r1− s1− r3
and r2−s1−r3 of these two links at the Layer-1 topology all

are blocked, so both links failed. For another example, when

s3 − r3 in Layer-1 is failed, we first determine that r3 − r4
in Layer-3 will be affected, and then find that there is another

path, i.e., r3− s2− r4 in Layer-1. Then, no Layer-3 links are

affected.

IV. DESIGN DETAILS

This section presents the details of General Scenarios

Aggregation (§IV-A), and Fast Topology Mapping (§IV-B),

followed by several optimizations (§IV-C).

A. General Scenarios Aggregation

The computation of failure scenarios relies on identifying

hot links whose failure will change the forwarding or routing

paths. In the following, we first define hot links, and then show

how to compute relevant failure scenarios by identifying hot

links, and finally show how to aggregate these scenarios to

improve scalability.

DEFINITION 1. Given a property p(s, d) and failure scenario

f(linksup, linksdown), a link link ∈ linksup is “hot” with

respect to f and p, iff failing link will change the forwarding

behavior (paths) of the packets from s to d.

Algorithm 1: Hot Link Identification

input : s: the source device, d: the destination prefix,
RibP : the RIB for protocol P , Rib: the Main RIB.

output: H: the set of hot links.
1 Function H(s, d):
2 return R(s, d) ∪ F (s, d)

3 Function F(s, d):
4 H ← {}
5 if Connected(s, d) then
6 return (s,Node(d)) ▷ s have a direct route to d

7 P ← Ribs(d).T ype ▷ the protocol of route to d

8 D ← {r.NextHop|r ∈ RibP
s
(d)} ▷ ECMP

9 foreach d′ ∈ D do

10 H ← H∪H(s, d′)
11 if Node(d′) ̸= Node(d) then

12 H ← H∪H(Node(d′), d) ▷ not on same device

13 return H

14 Function R(s, d):
15 H ← {}
16 if Connected(s, d) then
17 return (s,Node(d))

18 P ← Ribs(d).DynType ▷ dynamic routing type

19 D ← {r.LastHop|r ∈ RibP
s
(d)} ▷ ECMP

20 foreach d′ ∈ D do

21 H ← H∪H(Node(d′), s.peer ip)
22 if Node(d′) ̸= Node(d) then

23 H ← H∪R(Node(d′), d)

24 return H

Identifying hot links. For each property, NetMiner identifies

all the hot links solely based on the RIBs computed by simula-

tors (e.g., Batfish). This makes the hot link identification fully

agnostic of vendor-specific protocol implementations, which

has already been accounted for when simulators compute

the routes, and therefore does not hurt fidelity. In contrast,

NetDice [3] designs a customized algorithm to model the route

computation process, and the hot links may not be correct due

to vendor-dependent behaviors.

NetMiner recursively resolves the forwarding path of the

packets, and the routes that are used during the forwarding. At

the same time, NetMiner resolves the path that those routes are

propagated. Then, NetMiner classifies all the links on either

the forwarding path or routing path as “hot”, and computes

relevant failure scenarios by failing one of those hot links each

time.

Alg. 1 shows this process, where the symbols are defined

in Table II. Given a source node s, a destination prefix d, and

a set of routing tables, the algorithm outputs a set of hot links

H. First, the hot links appear on either the forwarding path or

the routing path (Line 1-2). For the forwarding paths, if s has

a directly connected route to the prefix d, then the algorithm

returns the link from s to the next-hop device (Line 5-6);

Otherwise, the algorithm resolves the next-hop IP addresses

by looking up the RIBs of the protocol (Line 7-8). For each

next-hop IP address d′, the algorithm recursively computes the

H(1,7)

(1-2)(2-4)(4-5)(2-5)(2-3)(3-5)(5-7)

F(1,7)

(1-2)(2-4)(4-5)(2-5)

R(1,7)

(2-3)(1-2)(3-5)(5-7)

H(1,5)

(1-2)(2-4)(4-5)(2-5)

H(5,7)

(5-7)

F(1,5)

(1-2)(2-4)(4-5)(2-5)

R(1,5)

(1-2)(2-5)

H(1-2)

(1-2)

H(2,5)

(2-4)(4-5)(2-5)

F(2,5)

(2-4)(4-5)

R(2,5)

(2,5)

H(2,4)

(2-4)

H(4,5)

(4-5)

R(2,5)

(2-5)

H(2,1)

(1-2)

H(3,1)

(1-2)(2-3)

R(3,7)

(3-5)(5-7)

F(3,1)

(1,2)(2,3)

R(3,1)

(1,2)(2,3)

H(3,2)

(2-3)

H(2,1)

(1-2)

H(2,3)

(2-3)

R(2,1)

(1-2)

H(5,3)

(3-5)

R(5,7)

(5-7)

4

1 2 3

65

d7

Fig. 7. The process of Alg. 1 running on the network of Fig. 5. We simplified
the function parameters in the graph. We omit the leaf nodes in the graph,
which are the functions F and R.

forwarding path from s to d′ (Line 9), and also the forwarding

path from the device directly connected to d′ to the destination

prefix d (Line 11-12). The forwarding path would be the union

of the above two forwarding paths (Line 13). The process

of computing routing paths is very similar (Line 14-24). The

difference is that: (1) only dynamic routes (OSPF, BGP, etc.)

are considered since static routes do not depend on any links

(Line 18). (2) instead of the next-hop IP address, the algorithm

resolves the IP address that the last-hop router Node(d′) uses

to send the route to the current node s (Line 19); (3) the

reachability of the route recursively depends on the packet

reachability from Node(d′) to s (Line 21).

Fig. 7 shows the tree when using Alg. 1 to compute hot

links for the previous example (Fig. 5). The algorithm starts

from root node H() and recursively calls functions F () and

R(), which may recursively call functions H() and R(). At

each node, the set of hot links is shown below the function.

THEOREM 1. For a p(s, d) and a failure scenario f . The set

of links H returned by Alg. 1 contains all hot links for p(s, d)

on f .

Proof: Due to the lack of space, we only show the proof

sketch here. First, we show the theorem holds when there is

only OSPF: the theorem holds when the subnet d is one-hop

away from s; and if the theorem holds for k-hops away, then

it also holds for (k+1)-hops away. Then, we include the cases

for static routes, OSPF, and BGP. The proof is similar except

that the BGP route may be indirect (depending on OSPF or

static routes).

Aggregating failure scenarios. After identifying the hot links,

NetMiner generates failure scenarios for each property, and

aggregates the common failure scenarios. To realize the aggre-

gation, NetMiner maintains a set UP of unverified properties,

and a set Fl of failure scenarios for each tolerance level l.

Each f ∈ Fl is registered to a set of properties prop(f),
meaning that NetMiner needs to simulate f to determine

the failure tolerance levels for these properties. Let L1 be

the set of all Layer-1 links. Initially, F0 = f(L1, ∅), and

prop(f) = UP consists of all properties that hold under no

failures. NetMiner simulates the control plane under failures in

Fl starting from l = 0, and retrieves the FIBs. Then, for each

property p ∈ prop(f), NetMiner checks if p holds based on

the FIBs. If p holds, then NetMiner identifies the Layer-3 hot

links with Alg. 1, and maps the Layer-3 hot links to Layer-

1 hot links with FTM. Let link1 be such a hot link, which

aggregates num physical links. Then, NetMiner moves p from

prop(f) to a new prop(f ′), where f ′ ∈ Fl+num. Otherwise,

if p does not hold, then, NetMiner moves p from prop(f) to

the set of verified properties V P , and sets the tolerance level

of p to l. The above process continues when Fl = ∅ for each

l ≤ L.

Simulating the control plane under failures. For each

failure scenario f1(links1up, links
1
down) (a partition of layer-

1 links as defined in §II-B), We derive the corresponding

Layer-3 failed links links3down = M1→3(links1down), where

M1→3 is a map from Layer-1 links to Layer-3 links (FTM

as defined in the following subsection.) Then, we feed the

Layer-3 failure scenario f3(links3up, links
3
down) to off-the-

shelf control plane simulator or emulator, and retrieve the

forwarding tables (FIBs) and routing tables (RIBs).

B. Fast Topology Mapping

NetMiner needs to compute what Layer-3 links will fail

when failing a Layer-1 link, for the control plane simulator

(e.g., Batfish) (Task 1). This is time-consuming if NetMiner di-

rectly uses Batfish to re-compute a new Layer-3 topology. In

addition, after NetMiner uses Alg. 1 to identify the Layer-3 hot

links, it needs to compute the Layer-1 hot links (Task 2). To

efficiently support the above two tasks without re-computation,

NetMiner constructs bidirectional maps between Layer-1 links

and Layer-3 links.

Initializing the Layer-3 topology. Let L1 be the set of all

Layer-1 links. 2 Then, NetMiner constructs the set of all Layer-

3 links L3, such that (s, d) ∈ L3 iff the following conditions

are satisfied: (1) an interface of s and another interface of d

are in the same subnet; (2) these two interfaces are reachable

through some VLAN; (3) there is at least a physical path (a

sequence of Layer-1 links) between these two interfaces. We

initialize the Layer-3 topology in the following two steps:

Step 1: Layer-2 topology construction. Given L1, NetMiner

obtains the virtual links between Layer-2 port and Layer-1

port from the network configurations, and then derives the

links between Layer-2 ports. As shown in Fig. 8, R2-Eth2

and S1-Eth4 are two connected Layer-2 ports.

Step 2: Layer-3 topology construction. NetMiner creates

virtual links between each Layer-3 port with all Layer-2 ports

on the same device. Then, NetMiner constructs the Layer-

3 links L3 by simulating the forwarding of Layer-2 frames

according to VLAN numbers. As shown in Fig. 8, NetMiner

constructs a Layer-3 link (R2-Vlanif2, R3-Vlanif2) since their

2One viable method of obtaining L1 is to use the SNMP protocol to read
the Physical Topology MIB of each device [30].

Eth1: 1

Eth2: 2Vlanif2

Vlanif1 Vlanif1

Eth6: 1 2

Eth3: 1

Eth4: 2

Eth5: 1 2

R1

R2

S1 R3

Vlanif2

Physical PortLayer-2 Virtual PortLayer-3 Virtual Port

Fig. 8. An illustration of Layer-3 topology construction for Fig. 6. Here,
dashed and solid links represent the virtual links we create and the real links,
respectively.

frames can traverse a path R2-Eth2 → S1-Eth4 → S1-Eth5

→ R3-Eth6.

During the construction of Layer-3 topology, NetMiner also

computes two maps. For each l3 ∈ L3, let Paths(l3) be

the set of all physical paths for l3. For example, in Fig. 6,

Paths((r3, r3)) = {r3 − s3 − r4, r3 − s2 − r4}. For each

l1 ∈ L1, let Links(l1) be the set of Layer-3 links that “use”

l1. Formally, Links(l1) is defined as:

Links(l1) = {l3|∃path ∈ Path(l3), l1 ∈ path} (3)

NetMiner needs to re-initialize the Layer-3 topology if the

physical topology changes, which is quite infrequent. As a

result, we believe a minute-level running time for such a task

is affordable in most cases.

Defining the bidirectional maps. After the initial construction

of Layer-3 topology, NetMiner can realize the bidirectional

map between Layer-1 links and Layer-3 links:

• M1→3 : L1 → 2L3, which maps Layer-1 links L1 to a

set S of Layer-3 links, satisfying that if links in L1 fail,

then Layer-3 links in S will fail.

• M3→1 : L3 → 2L1, which maps a Layer-3 link l3 to a

set of S Layer-1 links, satisfying that failing any other

links not in S will not affect l3.

Task 1: From Layer-1 failed links to Layer-3 failed links.

Each time NetMiner needs to simulate the control plane after

failing a Layer-1 link L1, it uses Eq. (4) to compute the Layer-

3 failed links M1→3(L1), without re-computing the Layer-3

topology using simulators (e.g., Batfish).

M1→3(L1) = {l3 ∈ Links(l1)|l1 ∈ L1,

∄path ∈ Path(l3), path ∧ L1 = ∅}
(4)

The time complexity for computing Eq. (4) is O(KNM),
where K is the size of L1, N is the average size of Links(l1),
and M is the average number of links in Path(l3).

Task 2: From Layer-3 hot links to Layer-1 hot links. After

NetMiner identifies the Layer-3 hot links, for each hot link l3,

it uses Eq. (5) to identify the corresponding Layer-1 hot links

M3→1(l3).

M3→1(l3) = {l1 ∈ L1|∃path ∈ Paths(l3), l1 ∈ path} (5)

The time complexity for computing Eq. (5) is O(M).
This approach may over-estimate the hot links when there

are multiple reachable paths on Layer-1, and the network will

use Spanning Tree Protocol (STP) to select one of the paths.

Currently, we find no performance degradation due to the over-

estimation, and therefore have not considered the simulation

of STP.

C. Optimization - Property trimming

We initially use the PC (See §II-B) as unverified properties

(UP) that GSA needs to consider. We reduce the number

of properties that GSA needs to consider with two trimming

methods, and thus reduce the number of failure scenarios in

NetMiner.

Trimming based on enumeration analysis. When the number

of failed links l is relatively small, the enumerated failure

scenarios are basically the same as the failure scenarios

calculated by GSA. At this time, we can set the tolerance

threshold Lt and enumerate the failure scenarios when l is

below the threshold, and select the failure scenarios by GSA

when l is above the threshold. For a network without link

aggregation, we can simply set Lt = 1; Otherwise, we can

set Lt to the minimum number of aggregated links between

device pairs. When we finish traversing all failure scenarios

with enumeration, the tolerance of all properties is determined

in the range 0−Lt. Then, NetMiner takes the tolerance value

of property equal to Lt as unverified properties, because these

properties might have large failure tolerance.

Trimming based on topology condition. Then, we filter

properties that do not meet topology conditions in unverified

properties. If the tolerance value of a property is l, then its

minimum cut must be l+1. Therefore, we select the minimum

cut of property greater than Lt +1 in unverified properties to

be verified. And there are various efficient ways to compute

the minimum cut such as k + 1 connected components.

V. EVALUATION

In this section, we evaluate NetMiner on multiple topologies

to address the following questions:

• How does NetMiner scale to the actual topologies com-

pared to state-of-the-art? Experiments show that Net-

Miner is 2-5 orders of magnitude faster than the Property-

Aggregation approach with simulation-based verifiers,

and also an average of 10× faster than the analysis-based

approach.

• How do General Scenarios Aggregation (GSA) and fast

topology mapping (FTM) contribute to NetMiner? Exper-

iments show that GSA reduces the number of failure sce-

narios by 2-3 orders of magnitude compared to Property-

Aggregation approach. FTM can improve the speed of

generating Layer-3 topology by 5-6 orders of magnitude

compared to the baseline approach generating Layer-3

topology.

• Can NetMiner support various configuration features

without fidelity loss? Experiments on real configurations

show that NetMiner avoids some incorrect results re-

turned by Config2Spec.

Implementation. We implement NetMiner with 8k lines of

C++ code and an extra 2k lines to re-implement Delta-net

TABLE III
Time for NetMiner to mine specifications from DC1 and DC2 networks. We
set l = 3 for the datasets without link aggregation (PHYS) and l = 12 for

the dataset with PHYS.

Datasets W/O ALL (s) W/ ACL (s) W/ ACL-PHYS (s)

DC1 18901 23004 16341
DC2 733 990 1083

[20]. We use Batfish3 [15] to generate the data plane (RIBs

and FIBs) and Delta-net to model the data plane. We extend

Delta-net to support load-balancing, and use Delta-net [20] for

single-domain incremental updates to build separate models

for source and destination IPs. However, our framework can

be easily extended to multiple domains, such as APKeep [19].

Approaches for comparison. We implement a Property-

Aggregation (PA) approach, i.e., enumerating failure scenarios,

with Batfish as the control plane simulator, and Delta-net as

the data plane verifier. We implement a Scenario-Aggregation

(SA) approach, i.e., enumerating candidate properties, with the

open-source code of Tiramisu [31]. We use Config2Spec [32]

as the state-of-the-art Property-Scenario-Aggregation (PSA)

approach.

Datasets. We use the following three real datasets and three

synthesized datasets.

(1) Real configurations of two data center networks (DC1

and DC2) from a large public cloud provider. The con-

figurations include OSPF, BGP, VRF, VLAN, ACL and

link aggregation. DC1 (DC2) has 178 (373) routers, 5314

(8673) physical links, ∼0.5k (0.7k) prefixes, ∼3k (0) ACL

rules, single (multiple) VRF, and ∼200k (374k) lines of

configurations. Based on each dataset, we construct two

additional datasets for comparison with other tools. (1)

W/O ALL, by removing ACL, VLAN, and link aggrega-

tion from the configurations (2) W/ACL, by removing

VLAN and link aggregation from the configurations.

Moreover, we note that the initial configurations with

ACL, VLAN, link aggregation as W/ACL-PHYS. For

W/ACL-PHYS, we set l=12 and others set l=3, which

is due to the existence of link aggregation (many device

pairs aggregate 4 physical links).

(2) Real configurations of Internet2 network running ISIS,

from Config2Spec [23]. The network consists of 10

routers and 18 links.

(3) Synthesized configurations for three WAN networks run-

ning BGP or OSPF, from Config2Spec [23]. The BGP

(OSPF) datasets consist of small, medium and large

topologies, which are 33 (48), 70 (85), and 158 (189)

routers (links), respectively.

All experiments run on a Linux server with two 12-core

Intel Xeon CPUs @ 2.3GHz and 256G memory.

A. Scalability

We use NetMiner and the other three tools to mine specifica-

tions from the six datasets. The properties we consider include

3The version of Batfish involved in all experiments is 0.36.0.

100

102

104

106

108
109

ospf

bgp
ospf

bgp
ospf

bgp
Internet2

w
/o-all

w
/o-all

bics columbus uscarrier DC1 DC2

T
im

e
 (

s
)

PA(Batfish+Delta-net)
SA(Tiramisu)

PSA(Config2Spec)
PSA(NetMiner)

Fig. 9. Time to mine specifications for reachability, waypoint, and load
balancing. Here, since PA cannot run to complete within a day, we report
the estimated time based on the average time for a single failure scenario and
the total number of failure scenarios.

100

102

104

106

108

ospf

bgp
ospf

bgp
ospf

bgp
Internet2

w
/o-all

w
/-acl

w
/-acl-phys

w
/o-all

w
/-acl

w
/-acl-physbics columbus uscarrier DC1 DC2

1036 1038

#
 C

a
lc

u
la

ti
o
n
s

(Property-Aggregation)
(Scenario-Aggregation)

(NetMiner)

Fig. 10. The number of simulations (for PA and NetMiner) or verifications
(for SA) of different methods.

reachability, waypoint, and load balancing. Since Tiramisu can

only verify reachability, we only mine reachability specifica-

tion for Tiramisu. The bound on maximum link failures is set

to l = 3. For the DC1 and DC2, we use the dataset W/O

ALL, since the other tools cannot correctly process them. We

don’t run Tiramisu on DC1 and DC2 because of configuration

parsing issues.

Fig. 9 reports the running time. NetMiner is 2 to 5

orders of magnitude faster than the Property-Aggregation

approach (Batfish+Delta-net), which cannot finish within 2

days, 6 to 16× faster than the Scenario-Aggregation ap-

proach (Tiramisu), and 5 to 10× faster than Property-Scenario-

Aggregation approach (Config2Spec).

Note that this experiment is not to emphasize the improved

performance of NetMiner. Instead, our focus here is to show

that NetMiner does not trade off the scalability for the fidelity,

although we use the pure simulation-based verifier.

Mining specifications on the real datasets. Only Net-

Miner can support the real configurations for DC1 and DC2.

As shown in Table III, the execution time does not change

significantly. For DC1, the time for W/ACL PHYS becomes

even faster. The reason is the connections between some

devices aggregate 8 or 16 links, making a large number of

failure scenarios invalid.

B. Microbenchmark

We show how GSA reduces the number of simulations, and

how FTM reduces the time of one-shot simulation.

General Scenarios Aggregation. We compare the compu-

tation cost of different methods, in terms of the number of

failure scenarios to simulate (for PA and NetMiner), and

the number of properties to check (for SA). As shown in

TABLE IV
Time for computing Layer-3 topology and simulating the control plane.

Here, l is the number of failed Layer-1 links.

Datasets
Layer-3 Topology Computation Time Simulation Time
Batfish NetMiner Batfish
l=1,2,3 l=1 l=2 l=3 -

DC1 7.8s 9us 11us 15us 3.1s
DC2 192.7s 676us 1076us 1423us 0.54s

100

102

104

106

108

ospf

bgp
ospf

bgp
ospf

bgp
Internet2

w
/o-all

w
/-acl

w
/-acl-phys

w
/o-all

w
/-acl

w
/-acl-physbics columbus uscarrier DC1 DC2

>1030 >1030

#
 S

c
e
n
a
ri

o
s

(Hot links identification)
(Property trimming)
(Failure scenarios aggregation)

Fig. 11. Comparison of the number of failure scenarios to simulate, after
applying hot links identification, property trimming, and failure scenarios
aggregation.

Fig. 10, NetMiner reduces the number of simulations by 2 to

3 orders of magnitude, compared with PA. The performance

gap enlarges when modeling the physical topology, such as

W/ACL-PHYS, because when considering link aggregation,

we can reduce a large number of invalid failure scenarios.

The number of simulations of NetMiner is 1 to 2 orders of

magnitude less than the number of properties checked by SA.

The effectiveness of GSA is further shown in Fig. 11. After

identifying all hot links, the property trimming reduces the

number of unverified properties by 3 to 6×, while failure

scenarios aggregation further reduces the number of scenarios

by 1 to 2 orders of magnitude.

In addition, property trimming is only effective with low

tolerance level, because for high tolerance property, both

trimming method inside property trimming fail at this point.

Fast Topology Mapping. We next show the effectiveness

of fast topology mapping (FTM). Specifically, we compare

the running time for FTM and Batfish to generate Layer-3

topology when Layer-1 links are failed. As we can see in

Table IV, FTM is 5 to 6 orders of magnitude faster than

Batfish.

C. Fidelity

We use the two real data center configurations to evaluate

the fidelity of NetMiner. Specifically, we demonstrate Net-

Miner can avoid incorrect results due to missing features like

ACLs, etc., or not modeling physical link failures.

Rich protocol features. NetMiner offloads the routing model

to the simulation-based control plane verifiers, so that it can

easily support rich protocol features as the mature verifiers

do, e.g., Batfish. To confirm this, we run Config2Spec and

NetMiner on DC1 without ACL rules, both of which return

a specification with 127079 reachability properties. After

adding ACLs into the configurations, NetMiner returns 126848

reachability properties, because ACL rules block some traffic,

100
101
102
103
104
105
106

m
f0

m
f1

m
f2

m
f3

m
f4

m
f5

m
f6

m
f7

m
f11

m
f12

#
 P

ro
p
e
rt

ie
s

(DC1-W/ACL)
(DC1-W/ACL-PHYS)

(DC2-W/ACL)
(DC2-W/ACL-PHYS)

Fig. 12. Distribution of the number of properties for different tolerances
between considering physical link aggregation (W/ACL-PHYS) and not
considering physical link aggregation (W/ACL).

while Config2Spec still returns the same result. We manually

confirmed that the reduction in reachability properties is

indeed due to the existence of ACLs.

Real failure model. As shown in Fig. 12, most properties have

a high tolerance value when considering physical links rather

than logical (Layer-3) links. That is, using existing control

plane verifiers [1], [3]–[6], one may under-estimate the failure

tolerance of reachability properties. Note that the property with

mt = 3 in W/ACL may have a higher tolerance value, because

we set the upper tolerance limit, so we only mine the tolerance

value to mt = 3.

VI. DISCUSSION

Supporting more properties. NetMiner is extensible to mine

any property that can be inferred by the best routes from

RIBs. The policies include bounds on path length, multi-path

consistency, etc [1], [3]. However, NetMiner does not currently

support path preference [1], because NetMiner does not model

non-best routes. At the same time, NetMiner cannot mine

isolation policy because there is no forwarding path between

isolated peer ends.

Supporting virtualized networks. For physical networks,

NetMiner uses FTM to construct the relationship between the

Layer-1 topology and the Layer-3 topology, while using GSA

to derive the reachability between end-pairs on the Layer-

3 topology. In the case of virtualized networks, such as

VXLANs, additional layers need to be considered. Taking

VXLAN for example, we also need to consider the virtual

Layer-2 reachability between both ends of the VXLAN tun-

nel; and virtual Layer-3 reachability between different virtual

private networks (VPNs). Extending NetMiner to support more

layers is left as one of our future works.

VII. CONCLUSION

We propose NetMiner, a network specification mining tool

with high scalability and high fidelity. NetMiner is built upon

pure simulation-based verifiers, so as to abstract away all

the vendor-specific models, ensuring its high fidelity. To the

end of scalability, NetMiner designs (1) a General Scenario

Aggregation to analyze the property-related scenarios only,

and (2) a Fast Topology Mapping method that incrementally

transforms Layer-1 topology to Layer-3 topology. We evaluate

NetMiner on real topologies and compare it with the state-of-

the-art. Results show that NetMiner can scale to large networks

while supporting rich protocols and real failure models.

REFERENCES

[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu:
Fast multilayer network verification,” in 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), 2020, pp.
201–219.

[2] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in 17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 20), 2020, pp. 953–967.

[3] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev, “Prob-
abilistic verification of network configurations,” in Proceedings of the

Annual conference of the ACM Special Interest Group on Data Commu-

nication on the applications, technologies, architectures, and protocols

for computer communication, 2020, pp. 750–764.

[4] P. Zhang, D. Wang, and A. Gember-Jacobson, “Symbolic router execu-
tion,” in Proceedings of the ACM SIGCOMM 2022 Conference, 2022,
pp. 336–349.

[5] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang, X. Wu, T. Guo,
C. Jin et al., “Accuracy, scalability, coverage: A practical configuration
verifier on a global wan,” in Proceedings of the Annual conference

of the ACM Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols for computer

communication, 2020, pp. 599–614.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, 2017, pp.
155–168.

[7] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in Proceedings

of the 2016 ACM SIGCOMM Conference, 2016, pp. 300–313.

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 328–341.

[9] A. El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev, “Network-wide
configuration synthesis,” in International Conference on Computer Aided

Verification. Springer, 2017, pp. 261–281.

[10] ——, “Netcomplete: Practical network-wide configuration synthesis
with autocompletion,” in 15th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 18), 2018, pp. 579–594.

[11] K. Subramanian, L. D’Antoni, and A. Akella, “Synthesis of fault-
tolerant distributed router configurations,” Proceedings of the ACM on

Measurement and Analysis of Computing Systems, vol. 2, no. 1, pp.
1–26, 2018.

[12] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Scalable verification of border gateway protocol configu-
rations with an smt solver,” in Proceedings of the 2016 acm sigplan

international conference on object-oriented programming, systems, lan-

guages, and applications, 2016, pp. 765–780.

[13] K. Subramanian, L. D’Antoni, and A. Akella, “Synthesis of fault-
tolerant distributed router configurations,” Proceedings of the ACM on

Measurement and Analysis of Computing Systems, vol. 2, no. 1, pp.
1–26, 2018.

[14] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Aed: Incre-
mentally synthesizing policy-compliant and manageable configurations,”
in Proceedings of the 16th International Conference on emerging

Networking EXperiments and Technologies, 2020, pp. 482–495.

[15] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” in 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), 2015, pp. 469–483.

[16] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in Proceedings of the 26th Symposium on

Operating Systems Principles, 2017, pp. 599–613.

[17] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpreta-
tion of distributed network control planes,” Proceedings of the ACM on

Programming Languages, vol. 4, no. POPL, pp. 1–27, 2019.

[18] P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and H. Li,
“Differential network analysis,” in USENIX NSDI, 2022.

[19] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “Apkeep:
Realtime verification for real networks,” in 17th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 20), 2020,
pp. 241–255.

[20] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network
verification using atoms,” in 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17), 2017, pp. 735–749.
[21] H. Yang and S. S. Lam, “Real-time verification of network properties us-

ing atomic predicates,” IEEE/ACM Transactions on Networking, vol. 24,
no. 2, pp. 887–900, 2015.

[22] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proceedings of the

first workshop on Hot topics in software defined networks, 2012, pp.
49–54.

[23] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Con-
fig2spec: Mining network specifications from network configurations,”
in 17th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 20), 2020, pp. 969–984.
[24] A. Kheradmand, “Automatic inference of high-level network intents by

mining forwarding patterns,” in Proceedings of the Symposium on SDN

Research, 2020, pp. 27–33.
[25] L. HUANG and L. LU, “Segmentation of ischemic stroke lesion based

on long-distance dependency encoding and deep residual u-net,” Journal

of Computer Applications, vol. 41, no. 6, p. 1820, 2021.
[26] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” Acm sigplan notices, vol. 49, no. 1, pp. 113–126, 2014.

[27] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker, “Don’t
mind the gap: Bridging network-wide objectives and device-level con-
figurations,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 328–341.

[28] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and
N. Foster, “Merlin: A language for provisioning network resources,” in
Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies, 2014, pp. 213–226.
[29] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,

C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.
[30] A. Bierman and K. Jones, “Rfc2922: Physical topology mib,” 2000.
[31] A. Abhashkumar, A. Gember-Jacobson, and Akella, “Tiramisu source

code,” 2020, https://github.com/anubhavnidhi/batfish/tree/tiramisu.
[32] R. Birkner, D. Drachsler-Cohen, L. Vanbever, and M. Vechev, “Con-

fig2spec source code,” 2020, https://github.com/nsg-ethz/config2spec.

https://github.com/anubhavnidhi/batfish/tree/tiramisu
https://github.com/nsg-ethz/config2spec

	Introduction
	Motivation
	Why Mining Specification
	Problem Definition
	Limitations of Existing Methods

	Overview
	Workflow of NetMiner
	General Scenarios Aggregation
	Fast Topology Mapping

	Design Details
	General Scenarios Aggregation
	Fast Topology Mapping
	Optimization - Property trimming

	Evaluation
	Scalability
	Microbenchmark
	Fidelity

	Discussion
	Conclusion
	References

