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Abstract
State-of-the-art network verifiers extensively use Binary

Decision Diagram (BDD) as the underlying data structure to
represent the network state and equivalence classes. Despite
its wide usage, we find BDD is not ideal for network verifi-
cation: verifiers need to handle the low-level computation of
equivalence classes, and still face scalability issues when the
network state has a lot of bits.

To this end, this paper introduces Network Decision Dia-
gram (NDD), a new decision diagram customized for network
verification. In a nutshell, NDD wraps BDD with another
layers of decision diagram, such that each NDD node repre-
sents a field of the network, and each edge is labeled with
a BDD encoding the values of that field. We designed and
implemented a library for NDD, which features a native sup-
port for equivalence classes, and higher efficiency in memory
and computation. Using the NDD library, we re-implemented
five BDD-based verifiers with minor modifications to their
original codes, and observed a 100× reduction in memory
cost and 100× speedup. This indicates that NDD provides a
drop-in replacement of BDD for network verifiers.

1 Introduction

Network verification is becoming an important toolchain for
network operators to ensure the correctness of their networks
[9, 10, 13, 14, 16, 19, 24–28, 30, 32–34, 37, 39, 41, 47, 48, 50–
58], and some of them have been deployed by large service
providers to detect misconfigurations [32, 37, 48, 54].

Many network verifiers use Binary Decision Diagram
(BDD) [11, 20], to compactly represent network state like
packet headers, routes, failures, etc. Despite its extensive us-
age, we find that BDD is not ideal for network verification
tasks, in the following three aspects.

Memory inefficiency. We observe BDD-based network ver-
ifiers create a lot number of redundant nodes, which share
the same sub-structure on some fields, but cannot be reduced
since their differences on other fields. This redundancy is mag-

nified when verifiers [13, 57] compute equivalence classes
(i.e., atomic predicates, or simply atoms 1), which leads to an
“explosion of atoms” and overflows the memory.

Computation inefficiency. We observe that BDD-based net-
work verifiers are slowed down by logical operations, e.g.,
a∧b. The reason is BDD operations proceed in a recursive
way, with each recursion looking at a single bit of a and b.
Even worse, if the BDDs encode different variables, more
recursions are needed to “align” their variables. Considering
networks often match on multiple fields (e.g., 5-tuple, 104
bits), the recursions can be deep and therefore very slow.

Lack of support for network verification. We observed
that BDD libraries offer little support for common tasks of
network verification, e.g., computation of atoms [51], incre-
mental update of atoms [13,57], and handling of packet trans-
formers [53]. As a result, network verifiers need to design
their own algorithms, which can be quite complex, for these
common tasks, and still encounter scalability problems due
to the aforementioned explosion of atoms.

We attribute the above problems to the fact that BDD is
agnostic of fields, an important semantics in networks, where
a device processes routes and packets by matching one or
multiple fields. Moreover, the matching shows a characteristic
of “field locality”: each rule matches few but different fields
of the network. This makes the fields mostly orthogonal, such
that the number of nodes can be a cross-product of that for
each field, and therefore quite large.

Based on the above observation, our basic idea is: instead
of viewing the entire network state as a whole, we partition
it into a set of fields, so that logical operations are restricted
to BDDs of the same field, and redundant nodes of the same
fields can be reduced, fully independent of other fields.

After decoupling fields, a question arise: how to represent
network state with the per-field BDDs? A naive way of using
conjunctions of per-field BDDs is not compact, and can lead
to an explosive number of conjunctions. Our approach to the

1For brevity, the following of this paper will use the term “atoms” to refer
equivalence classes or atomic predicates [51].



representation problem is to wrap the per-field BDDs with
another layer of decision diagram, termed Network Decision
Diagram (NDD). In an NDD, each NDD node u encodes a
field f of multiple bits, and each edge of u is labeled with a
BDD of field f . We show such a representation is compact,
and prove it is actually canonical. In addition, since NDDs
can look at many bits each time, logical operations of NDDs
require much less recursions.

Finally, instead of computing single set of atoms for all
fields, we compute a set of atoms for each field f , and trans-
form the labels of each NDD edge from BDDs into a set of
atoms. We term the resultant NDD as atomized NDD. Then,
logical operations (e.g., ∧, ∨) on NDDs can be replaced with
simpler set operations (e.g., ∩, ∪), similar to [51].

The atomized NDD offers a lot of benefits. First, since
the atoms are over a single field, we avoid the cross-product
effect and can dramatically reduce the total number of atoms
in the network. Moreover, all atom-related operations can
be fully transparent to network verifiers, such that verifiers
are agnostic of atoms, and do not need to realize their own
atom-related algorithms.

Based on the above ideas, we realize an NDD library 2. It
features a native support for the computation and incremental
update of atoms, and provides an efficient way for handling
packet transformers. We use the NDD library to re-implement
5 BDD-based network verifiers, i.e., AP Verifier [52], APT
[53], APKeep [57], SRE [58], and Batfish [19], with minor
modifications to their original codes. After replacing the BDD
library with the NDD library, these verifiers show a 2 orders-
of-magnitude reduction in both memory and time.

Contributions. In sum, this paper makes three contributions:

• We introduce Network Decision Diagram (NDD), a new
decision diagram customized for network verification.

• We implement an NDD library, and use it for 5 different
network verifiers with small modified LOCs.

• We use real and synthetic datasets to show that by using
NDD, the 5 verifiers achieve a 2 orders-of-magnitude
reduction in both memory and time.

Limitations. NDD builds on the assumption of field locality,
which generally holds on our datasets. However, if rules in
a network match most of the fields, NDD may not perform
better than BDD (§6.6).

2 Motivation

2.1 Preliminary to BDD

Binary Decision Diagram (BDD) is a rooted, directed acyclic
graph (DAG) with two terminal nodes (true and false), and

2open sourced at https://github.com/XJTU-NetVerify/NDD
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Figure 1: An example of BDD encoding the boolean formula
(¬x1∧ x2)∨ (x1∧ x2∧ x3).

multiple non-terminal (variable) nodes (refer to Figure 1 as
an example). Each non-terminal node u represents a test of
a boolean variable var(u), and has two outgoing edges, i.e.,
a high edge and low edge (shown as solid and dashed line,
respectively). These two edges point to two successor nodes
high(u) and low(u), i.e., a high successor and a low successor,
respectively. The semantics is that: if x is tested to be true
(false), then the high (low) edge will be followed and the next
test will be high(u) (low(u)). Each path from the root node to
the terminal node true corresponds to one truth assignment
of a boolean formula. For the BDD in Figure 1, there are
only two paths from the root node to the terminal node true,
encoding two truth assignments of x1 = false,x2 = true, and
x1 = true,x2 = true,x3 = true, respectively. Therefore, this
BDD represents a boolean formula (¬x1∧x2)∨ (x1∧x2∧x3).

Reduced Ordered BDD. A BDD is said to be an Ordered
(OBDD) if the boolean variables follow a fixed variable order
(say x1 < x2 < .. . ,< xn where xi < x j means variable xi ap-
pears before variable x j) on all paths through the graph. An
OBDD is said to be a Reduced (ROBDD) if it satisfies the
following two conditions:

(C1) Uniqueness: no two distinct nodes represent the same
variable and have the same successors;

(C2) No redundant node: no non-terminal node has identi-
cal high and low successor.

An important property of ROBDD is canonicity, i.e., for
any boolean formula, if the variable ordering is specified,
there is a unique ROBDD representing it [11]. As a result,
ROBDD can significantly reduce the node redundancy [20]
for a compact representation of boolean formulas, and is very
efficient for logical operations. Without specified otherwise,
the BDDs in this paper are ROBDDs.

BDD library. To use BDD, applications like network ver-
ifiers leverage off-the-shelf BDD libraries [7, 8]. A BDD
library needs to realize logical operations, e.g., and, or, not,
and other useful functions like exist, restrict, oneSat,
satCount, etc. Most of them are realized in a recursive way.

To achieve high efficiency of memory and time, modern
BDD libraries rely on some efficient algorithms and data struc-
tures. The node table (unique table) is a hash table holding all
BDD nodes, each of which is a distinct tuple (var, low,high).
When the node table is full, a BDD library will free unused
nodes with garbage collection (gc). A common way to realize

https://github.com/XJTU-NetVerify/NDD


1. foreach 1≤i≤32: vars(i) ← bdd.createVar();
2. foreach d ∈ devices: Preds.add(calPortPred(d, vars));
3. foreach pred ∈ Preds:
4. foreach a ∈ Atoms:
5. set.add(bdd.and(a, pred));
6. set.add(bdd.and(a, bdd.not(pred)));
7. Atoms← set;
8. foreach d ∈ devices, p ∈ d.ports:
9. foreach a ∈ Atoms:
10. if (bdd.and(p.pred,a) = a):
11. p.atoms.add(a);
12. traverseRec(Atoms, src);

13. Function traverseRec(pktSet, d)
14. if (!pktSet.isEmpty()):
15. foreach p ∈ d.ports:
16. forwarded← pktSet.intersect(p.atoms);
17. traverseRec(forwarded, p.nextHop);

BDD

1. var← ndd.createVar(32);
2. foreach d ∈ devices: Preds.add(calPortPred(d, var));
3. ndd.atomize(Preds);
4. traverseRec(ndd.true, src);

5. Function traverseRec(pktSet, d)
6. if (pktSet != false):
7. foreach p ∈ d.ports:
8. forwarded ← ndd.and(pktSet, p.pred);
9. traverseRec(forwarded, p.nextHop);

NDD

Figure 2: Pseudo code to verify networks based on BDD and
NDD, respectively.

gc is to maintain a reference count for each node, and when
the reference count of a node reaches zero, the node is marked
as dead, and will be freed when gc is called. Most BDD li-
braries use operation cache to speed up logical operations:
before each operation, the library firstly checks whether the
result exists in the operation cache, and returns the result if
there is a match; otherwise, the operation is performed and
the result is put into the cache.

2.2 The use of BDD in network verification
In the recent decade, BDD has been extensively used for
network verification. For example, many data plane verifiers
[13, 51, 57] use BDDs to efficiently represent packet equiva-
lent classes, and some control plane verifiers like SRE [57]
use BDD to represent failure equivalence classes. Interested
readers can refer to Appendix §G for an incomplete list of
network verifiers based on BDDs.

The top of Figure 2 shows a code snippet to implement
data plane verification based on BDD [51]. Note that we over-
simplify the codes to reflect the core logic. First, the verifier
creates a BDD variable for each bit of the field. Then, it com-
putes port predicates for each device (Lines 1-2), computes
atoms of all port predicates(Lines 3-7), and compute the set of
atoms for each port (Lines 8-11). Finally, it computes reacha-
bility by recursively traversing the network with a packet set
initialized to all atoms, and at each node filters some of atoms

based on the forwarding rules (Lines 12-17).
Despite its extensive usage in network verification, we find

BDD, however, is not ideal for achieving high efficiency for
either memory or computation. To show this, we use a toy
example with four nodes, as shown in Figure 3. For simplicity
of illustration, we assume there are four fields, i.e., dstIP,
dstPort, srcIP, and srcPort, where srcIP has only four
bits and other fields each has only two bits.
Memory inefficiency. First, we observe that there are a lot
of redundant BDD nodes that cannot be reduced. Figure 4(a)
shows three BDDs encoding three sets of packets that are
reachable from A to port 1 of D, following three different
paths (i.e., A→ B→ D, A→ C → D, and A→ D). These
three BDDs have a common sub-structure consisting of 14
nodes which encode variables x1 to x6 of srcIP and srcPort
(inside the red dashed box). That is, two copies of the sub-
structure (14× 2 = 28 nodes) are redundant. However, we
cannot eliminate these 28 nodes. The reason is that their nodes
encoding x6 point to different successor nodes encoding x7
(the first bit of dstIP), and therefore satisfy the uniqueness
condition of ROBDD and cannot be represented with a single
node. We term such a redundancy as partial redundancy as
it only exhibits on a subset of variables. The number of 28
redundant nodes may not seem a big issue in this toy example,
while for real networks, this number can be as large as O(108),
leading to a huge memory cost (§6.5).

In addition, the effect of partial redundancy is magnified by
the computation of atoms. When computing atoms, a verifier
needs to perform many logical conjunctions on BDDs, thereby
creating even more redundant nodes for each field. On our
virtualized datacenter network datasets, which have multiple
layers of packet headers, the number of redundant nodes can
overflow the BDD node table, a phenomenon which we term
as explosion of atoms. Interested readers can refer to Appendix
D for an example.
Computation inefficiency. In addition to the high memory
cost due to redundant nodes, we observe BDD-based network
verifiers are also unnecessarily slow due to the frequent but
inefficient logical operations. Specifically, to compute atoms
or check reachability, network verifiers need to perform many
logical operations (∧, ∨, ¬). Inside a BDD library, these op-
erations are realized recursively: a conjunction a∧b, where a
and b encode the same variable, boils down to two recursive
calls of low(a)∧ low(b) and high(a)∧ high(b). Since each
recursion only proceeds one bit, the recursions can go very
deep when there are many bits (e.g., 104 bits for 5-tuples).

Worse still, if a and b encode different variables, with an or-
dering say var(a)< var(b), many recursions may be needed
to “align” variables, i.e., recursively find a descendant node
of a, say a′, such that var(a′) = var(b). For example, in Fig-
ure 4(a), to compute and of BDDs labeled by A→ B→D and
b3, we first need to recursively find the node of b1, which en-
codes the same variable x7 as b3, rather than directly jumping
to the field dstIP. This amounts to 17 recursions in total.



One may wonder whether we can mitigate these limitations
with a better variable ordering. Putting aside finding an op-
timal variable ordering is a co-NP-complete problem [20],
we observe that the redundancy is there no matter what the
ordering of BDD variable is: when we re-order the variables,
the redundancy is just shifting from one place to another (see
Appendix A.9 for some numerical results.)

Lack of support for network verification. As a general-
purpose data structure, BDD offers little support for some
important tasks of network verification, including: (1) the
computation of atoms, (2) the incremental update of atoms,
and (3) the handling of packet transfomers.

First, many verifiers compute atoms over the network state
for a faster verification. For example, BDD-based data plane
verifiers like AP Verifier [52] partition the header space into a
small set of atoms, such that packets in the same atomic pred-
icate have the same forwarding behavior. When computing
reachable packet sets from source to destination, the verifiers
can use set operations (∪, ∩) on sets of atoms, instead of the
more expensive logical operations (∨, ∧) on BDDs. However,
using BDD, these verifiers need to implement their own al-
gorithms to compute atoms, which is nontrival and leads to
explosion of atoms.

Secondly, to avoid from-scratch re-computation of atoms af-
ter each network update, network verifiers [13,30,57] need to
design efficient algorithms to incrementally update the atoms.
For example, APKeep [57], a state-of-the-art data plane veri-
fier, designs efficient algorithms to achieve a realtime update
of atoms; Katra [13] extends APKeep to multi-layer networks
by computing partial equivalence classes, which can signif-
icantly improve the scalability of data plane verification for
multi-layer networks. However, both APKeep and Katra need
to implement their own algorithms for updating the set of
atoms, which tend to be more complicated than the from-
scratch computation of atoms, as in AP Verifier [51].

Finally, packet transformers such as NAT, IP-in-IP [40],
VXLAN [38], etc., are common in networks. The existence
of packet transformers makes the computation of atoms more
complicated. Verifiers like APT [53] and APKeep [57] use
customized algorithms to compute the atoms, such that the
input and output of any transformer can be represented by a
set of atoms. Such algorithms are also complex and may end
up with many atoms.

3 Introducing NDD

3.1 Observations
We observe the inefficiency of BDDs in network verification
is mainly due to the fact that BDD, as a general-purpose data
structure, lacks the notion of “field”, an important semantics
in networks. For example, network devices forward or filter
packets by matching one or multiple packet fields. Without
such a notion, network verifiers based on BDDs model the
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Figure 3: A toy example network used throughout this paper.

network state as a whole, and the number of BDD nodes
can grow exponentially with the number of fields, due to the
following “field locality” phenomenon.
Field locality refers to the fact that even though there can be
many fields in the network, each rule only matches on one or
few of these fields, and different rules may match different
fields. For example, forwarding rules in the underlay of a
network virtualized with VXLAN only match on the dstIP
of the outer header, while forwarding rules in the overlay
only match the dstIP of the inner header. As another exam-
ple, most ACL rules match a single or rather few fields, e.g.,
only 25 of 392 ACLs in the Purdue campus network match
more than one field [46]. Finally, each route policy filters
routes only based on one or two of all attributes, e.g., prefix,
communities, AS path.

Due to field locality, the different fields in network state are
orthogonal, meaning that the values of each field tend to be
independent of those of other fields. As shown in Figure 4(a),
the nodes for src IP/Port fields are orthogonal to those of
the dst IP/Port fields. As a result, multiple copies of the
same sub-structure for src IP/Port need to be created, due
to the different sub-structures for dst IP/Port.

3.2 Idea

Decoupling the fields. Our basic idea is partitioning the
whole network state (a bit vector) into a set of fields, which
can be packet headers (e.g., 5-tuple), route attributes (e.g.,
community, AS Path), or up/down state for different sets of
links, etc. Then, for each field, we create per-field BDD nodes
and place them into their own namespace, such that logical
operations and reduction of redundant nodes are restricted
to BDDs in the same namespace. As shown in Figure 4(b),
after reducing the redundant nodes for each of the four fields,
there are only 11, 5, 5 and 3 BDD nodes, respectively. This
amounts to a total number of 24 BDD nodes, instead of 50
ones as previously shown in Figure 4(a).

After the decoupling of fields, we can effectively reduce
the number of redundant nodes. The question is how can we
represent the network state with these BDDs, each of which
only encodes a field? A straightforward way is to use a set of
conjunctions or arrays of BDDs, where each BDD in an array
encodes a specific field (see Appendix E for details). Such an
approach is simple but can lead to an explosion of arrays after
logical operations (see Appendix A.10 for details).
Assembling fields. We approach this representation problem
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Figure 4: Illustrations of BDDs and NDDs. The dashed/solid lines represent false/true, and all edges to the BDD/NDD
terminal node false are omitted for simplicity.

by layering another layer of decision diagram on top of the
per-field BDDs. We term this layer of decision diagram as
Network Decision Diagram (NDD). In an NDD, each NDD
node represents a field of multiple bits and has multiple edges;
each edge of it is labeled with a BDD encoding those bits.

Such a representation is more compact than using BDD
arrays or conjunctions. Returning to the example, Figure 4(c)
shows the NDDs representing three sets of packets reachable
from A to D. Compared to (a) BDDs, NDD only creates
one copy of per-field BDD nodes in (b), as shown inside the
red box. This leads to 24 BDD nodes in total, instead of 50
ones as in (a). Note that NDD also needs three copies for
the same sub-structure; otherwise, it cannot distinguish the
three different packet sets. However, since each NDD variable
represents a field, each copy of the sub-structure has only 4
NDD nodes, which is much less than 14 BDD nodes as in (a)
(in red rectangles).

Moreover, logical operations on NDDs is much faster than
those on BDDs, since it can quickly skip a field in one recur-
sion. For example, in Figure 4(c), to compute and of the NDD
nodes labeled by A→ B→ D and n3, from the root node of
A→ B→D, NDD only needs 6 recursion for all paths in total
to reach the node n1, which has the same variable with n3.
This contrasts with BDDs, which need 17 recursions.

Finally, recall that network verifiers compute atoms over
the whole network state, leading to an explosion of atoms. In
addition, network verifiers need to design and implement their
own algorithm, in order to efficiently compute and update the
atoms, which are non-trival tasks.

Atomizing fields. Towards this problem, we design efficient
algorithm for the computation and update of atoms as an
internal process of NDD. Specifically, we compute a sepa-
rate set of atoms for each field, and then transform the label
of each NDD edge from a BDD to a set of atoms for that

field. After that, the logical operations (e.g., conjunctions)
on BDDs become set operations (e.g., intersections), which
tend to be faster. By computing atoms over individual fields,
NDDs avoid the problem of explosion of atoms. We term the
NDDs where labels of edges are represented with atoms as
atomized NDDs. Since NDD natively supports atomization,
network verifiers become fully agnostic of atoms, and can still
use the same logical operators after the NDDs are atomized.

3.3 Network Decision Diagram
Similar to BDD, an Network Decision Diagram (NDD) is also
a rooted, directed acyclic graph with two terminal NDD nodes
true and false. The key difference is that there are multiple
non-terminal NDD nodes, each of which represents a field,
rather than a bit. Formally, we have the following definition,
which is adapted from the definition of BDD in [11].

Definition 1. A Network Decision Diagram (NDD) is a
rooted, directed acyclic graph with

• two terminal NDD nodes true and false, with an
out-degree of zero.

• a set of non-terminal NDD nodes. Each node u is associ-
ated with a variable var(u) representing a field of one or
multiple bits, and has a set of outgoing edges, denoted
as edges(u). Each e ∈ edges(u) points to a successor
of u, denoted as next(e), and has a predicate over the
variable var(u), denoted as label(e).

• ∀u, ∀x,y ∈ edges(u) with x ̸= y: label(x)∧ label(y) =
f alse, and

∨
e∈edges(u) label(e) = true.

Note above the third condition generalizes that of BDD, say-
ing that the labels of edges from the same NDD node are
exclusive, and the union of these labels covers all values of
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the field. For BDD, a label is either 0 or 1, clearly satisfying
this condition.
Reduced Ordered NDD. The definition of Reduced Ordered
NDD (RONDD) is similar to that of ROBDD (§2.1). The
difference is that besides the two conditions uniqueness and
no redundant node, RONDD has a third condition:

(C3) No redundant edges: no two edges from the same
NDD node point to the same successor, i.e.,

∀u,∀x,y ∈ edge(u) : next(x) = next(y)⇒ x = y (1)

Figure 5 shows examples of the three conditions for
RONDD. Note that the number of edges for a non-terminal
NDD node u can be up to 2n in the worst case, where n is the
number of bits for var(u). But due to the third condition (C3),
the actual number is much smaller than that. For example,
99% of NDD nodes in SRE have no more than 10 edges (see
Appendix A.6 for details). Similar to ROBDD, RONDD also
has the canonicity property, such that RONDD can compactly
represent equivalent network state.

Lemma 1. Canonicity of NDD. For any boolean function
F(x1,x2, · · · ,xN) over N boolean variables with ordering
x1 < x2 < · · ·< xN , there is exactly only one RONDD u with
k NDD variables and ordering f1 < f2 < · · ·< fk, where fi
has ni bits x1

i < x2
i < · · ·< xni

i , and N = ∑
k
i=1 ni, such that u

can represent F.

Proof. The proof can be found in Appendix C.

3.4 Atomized Network Decision Diagram

Atomized Network Decision Diagram is an NDD where the
label of each edge is a set of atoms, instead of a BDD.

Definition 2. Given a set of NDDs N defined over a set of
variables F, we say A( f ) = {a f

1 , . . . ,a
f
k} is the set of atoms

for variable f ∈ F, with respect to N , if it satisfies the follow-
ing conditions:

(1) a f
i ̸= false,∀i ∈ {1, . . . ,k};

(2) ∨k
i=1a f

i = true;
(3) a f

i ∧a f
j = false, if i ̸= j;

(4) ∀e ∈ edges(u), u is a node of N with var(u) = f : there
exists a set atoms(e)⊂ A( f ), s.t., label(e) =

∨
a∈atoms(e) a;

(5) k is the minimum number satisfy the above properties.

Definition 3. Given a set of NDDs N , we say N a is the
atomized NDDs of N , if N a = N , except that for each edge
e of N , label(e)← atoms(e).
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4 Design of the NDD Library

Realizing an efficient NDD library to replace the current BDD
libraries for network verifiers is a non-trivial task, given that
modern BDD libraries apply various optimizations to reduce
memory cost and speed up computation. In this paper, we
design an NDD library based on existing BDD libraries like
JDD, by (1) extending the standard APIs with new functions,
e.g., atomize, and update; (2) adapting the design of logical
operations, garbage collection, and node table of BDDs to
work for NDDs, (3) re-using some optimizations of BDD, e.g.,
operation cache, and (4) applying some new NDD-specific
optimizations like removing the false NDD node.

4.1 The APIs
Table 1 shows the APIs of our NDD library, which is quite
similar to those of BDD libraries: The NDD library provides
operations similar to BDD, including createVar, apply, not
and exist, etc., such that existing verifiers can use the same
operators when switching from BDD to NDD. One exception
is createVar, which takes a parameter of len to represent
the number of bits for the NDD variable. To enable a native
support for the computation and update of atoms, the NDD
library also provides two additional functions, atomize and
update, using which a verifier can instruct the NDD library
to compute and update the atoms, respectively.

createVar. This API lets verifiers to declare a variable
in NDD, to represent a field in network. When a verifier
calls createVar with parameter len, the NDD library firstly
calls the createVar function of BDD libraries to create len
BDD variables, and then creates an NDD variable based on
these len BDD variables. Then, the NDD library maintains
the mapping between the NDD variable and the set of BDD
variables, which helps find the related BDD namespace of an
NDD node during NDD operations.

apply. This API provides a unified logical opera-
tion op ∈ {and,or,di f f} on two NDDs. In BDD li-
braries, apply is realized in a recursive way. Taking
c = apply(op,a,b) for example, where a and b encode
the same BDD variable var, the function will recur-
sively compute l = apply(op, low(a), low(b)), and h =
apply(and,high(a),high(b)), and returns a BDD node c with
var(c) = var, low(c) = l and high(c) = h.



Table 1: The APIs of NDD library. The first four are similar to BDD libraries, and the last two are introduced by NDD.
Function Description
createVar (Integer len) create an NDD variable with len bits
apply (op, NDD a, NDD b) apply a logical operation op on two NDDs a and b, where op ∈ {and, or, di f f}
not (NDD a) apply a logical negation on an NDD a
exist (NDD a, Field f ield) apply existential quantification for field f ield on NDD a
atomize (Set<NDD> N) compute per-field atoms for a set of NDDs N, replace BDDs of edges in N with a set of atoms
update (NDD δ, NDD a) update the set of atoms when a new NDD δ is added; a is an atomized NDD satisfying that δ⇒ a

For NDD, things become more complicated since each
NDD node may have multiple successors, each with a predi-
cate. We use the example in Figure 6 to illustrate this. Suppose
there are 2 fields x and y each with 3 bits, and we want to
compute apply(op,#5,#6). Without loss of generality, we
assume op=and. Unlike in BDD, where both BDD nodes
have the same number of 2 successors, the first NDD #5
has 3 successors while the second NDD #6 has a singleton
successor. Therefore, we need to enumerate all pairs of suc-
cessors (one from #5 and the other from #6). If the two suc-
cessors have overlapping test conditions, we can recursively
call apply on these two successors; otherwise, we continue
to another pair. For this example, the test condition of the
left successor of #5 does not overlap with that of #6, since
bdd_and(0∗∗,10∗) = f alse. Therefore, we continue to the
middle successor of #5, whose test condition overlaps with
that of #6. Then, we compute apply(and,#3,#2), and the re-
sult is the NDD node #2, and the test condition for this node
is 100, as shown on the left of Figure 6(c). Similarly for the
right successor of #5, we have the result shown on the right of
Figure 6(c). As we can see, there are two edges both pointing
to the NDD node #2, with different conditions 100 and 101.
Then, NDD can merge these two edges into a single one, and
compute a disjunction of the two conditions as 10∗, resulting
in the NDD node #6. Thus, we have apply(and,#5,#6) = #6.

Theoretically, if two NDD nodes have m and n successors,
respectively, we need to enumerate m×n pairs of successors,
and for each pair, we need to compute a conjunction of two
BDDs. However, in practice, this number is small. For exam-
ple, 99% of NDD nodes have less than 10 successors, when
we use NDD-based SRE [58] on an 80-nodes fattree networks
(Appendix A.6).

atomize. This API takes a set of NDDs as input, and com-
putes atoms for each variable, and transforms each of the
NDDs into atomized NDDs, where each edge has a set of
atoms atoms(e), satisfying ∨a∈atoms(e)a = label(e). We re-
alize this by firstly dividing all the NDD nodes and their
successors into groups, one for each NDD variable. After that,
for each group, we compute the atoms over all NDD nodes
in the group, in a similar way as [51]. Finally, for each edge
e ∈ edges(u) of some NDD node u, we compute atoms(e)
as follows: for each atom a of var(u), if a⇒ label(e), we
insert a into the atom set atoms(e). For logical operations on
two atomized NDDs, we can use set operations over atoms(e)
instead of logical operations over label(e).

update. This API takes an NDD δ and an atomized NDD a
satisfying δ⇒ a as input, updates per-field atoms and com-
putes the atom set atoms(e) for each edge e of δ and all (direct
or indirect) successors of δ. For the NDD node δ, we can com-
pute the conjunctions of BDDs of edges of δ with each atom
of field var(δ). But this is not necessary as δ⇒ a, where a is
an atomized NDD: we just need to compute conjunctions with
the atoms on paths from a to terminal true, since atoms not
in a never intersect with BDDs in δ. After that, we recursively
apply the update for the successors of δ and a. But instead
of enumerating all the edges of a for each eδ ∈ edges(δ), we
just need to consider an edge e if any atom in atoms(e) has
a non-false conjunction with label(eδ). Finally, we need to
replace the atoms being split with new atoms on all related
edges of atomized NDDs.

Details on the implementations of the above APIs can be
found in Appendix B.

4.2 The Internals

Node table, also termed as unique table, is a core data struc-
ture used by a BDD library to hold BDD nodes. Since the
BDD node table often dominates the memory cost of a BDD
library, and most API calls need to manipulate the node table,
the efficiency of node table will be the key to the perfor-
mance of a BDD library. A node table is essentially a hash
table with each BDD node is uniquely identified by a tuple
(var, low,high). In order to achieve a higher efficiency, in-
stead of using the built-in data structures like HashMap in
Java, modern BDD libraries like Buddy (C++), JDD (a Java
version of Buddy), etc., choose to implement their own node
table with a dynamic array, with customized hash algorithms
and collision resolution methods.

Different from BDD, where each node has exactly two
successors, an NDD node can have a variant number of suc-
cessors, and thus need a variant size of memory. Due to the
non-uniform NDD node size, it is nontrivial to adapt the array-
based implementation of BDD node table to NDD. Fortu-
nately, we find that the number of NDD nodes is much smaller
compared to that of BDD nodes, and therefore choose a sim-
pler implementation based on hash map, as shown in Figure 7.
Specifically, we represent an edge set of a node with a hash
map , where the key is the next node of the edge, and the
value is the label of the edge. Then, for each NDD variable,
we also maintain a hash map, where the key is an edge set,
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and the value is an NDD node which has such an edge set.
This hash map can be seen as a table holding nodes of the
same NDD variable. Then, the NDD node table is just a set
of these tables, one for each NDD variable. Note that we do
not need var in the hash key, since each variable has its own
sub-table. Also note that the hash function used for the edge
set should be associative and commutative; otherwise, two
nodes with the same successors and labels, but in a different
order may not have the same hash code, and will be treated
as different nodes. Our current implementation uses the Java
native HashMap (JDK 1.8), which satisfies such requirements.
Further optimizations may work better but we find the above
implementation already achieves a considerable improvement
for network verifiers based on BDDs.

As shown in Figure 7, for each NDD node, the library
creates a hash map consisting of all its edges. Then, the library
stores a tuple of a reference count, and a pointer to the hash
map of its edges, into the NDD node table, which is also a
hash map. Note that each field has its own NDD node table,
and the BDD nodes for different fields are logically isolated:
they still share the same BDD node table, but do not interfere
with each other.

Redundancy elimination is a function that is necessary for
(RO)BDDs to achieve a canonical representation of boolean
formulas. Recall that (RO)BDDs use two redundancy elimina-
tions rules uniqueness and no redundant nodes (tests). Besides
the above two rules, NDDs apply a third rule no redundant
edges. To apply this rule, the NDD library checks whether
two edges of an NDD node point to the same successor; if
so, it merges them into a single edge whose condition is the
disjunctions of the conditions of the two merged edges. For
uniqueness, BDD views two nodes as the same if their two
edges point to the same successor. NDD, however, requires
that not only their edges point to the same set of successors,
but also require that for each successor, the test conditions
(BDD) are the same. For no redundant node, BDD views a
node is redundant if both the high and low edges point to the
same successor. NDD, however, applies this rule in a slightly
different way: since NDD always merges edges pointing to
the same successor, an NDD node is viewed as redundant if it
has a single edge with condition true.

Garbage collection is important for BDD libraries to reduce
memory usage. A BDD library maintains a reference count
for each node, and marks those nodes with reference count
of zero as dead. When the size of a node table is reaching
a specified threshold, it frees all those dead BDD nodes to
make more space for new nodes. Similar to a BDD library,
an NDD library also uses reference counts for gc. One thing
worth mentioning is the dependency of the gc processes of the
NDD library and the BDD library. Firstly, since an NDD edge
uses BDDs to represent the test conditions, when the NDD gc
frees some NDD nodes and their edges, it should decrease the
reference count of BDD nodes used by these edges. Secondly,
we should ensure an NDD gc is always be called right before
a BDD gc. The reason is as follows. Suppose the BDD gc
is going to free all dead BDD nodes, some of which are still
in use on NDD edges (this can happen when an NDD node
is marked as dead but not freed by a gc). Those BDD nodes
can’t be freed without NDD gc freeing those edges, and that
will affect the performance of BDD library.
Removing the false NDD node. In BDD, there are two
terminal nodes true and false, where the false node and
all edges pointing to it can be removed without affecting the
correctness. However, most BDD libraries choose not to do
so, since the benefit is marginal. In NDD, however, removing
the false NDD node can achieve a considerable reduction
in memory cost. The reason is that each edge in NDD is
associated with a BDD, which represents the test condition
of that edge, and by removing edges to false, we can save
the BDDs on those edges. Moreover, since these BDDs often
represent some “default” cases, they tend to be complex and
freeing them often brings even larger reduction than other
BDDs not on edges to false. For atomized NDD, we observe
that the edges to the false NDD node often hold most of
the atoms, and removing the edges allows NDD to maintain
much less atoms. On our datasets, 85% edges pointing to
false take more than 95% atoms of related field, and 30%
of the edges each takes more than 2000 atoms (see Appendix
A.7 for details). In addition, since the and operations do not
care about the false NDD node (the conjunction of an NDD
with it is still false), removing edges to the false node can
reduce the running time by not enumerating these edges.
Operation cache. Similar to BDD libraries, our NDD library
also maintains an operation cache, a hash table where the
key is the operation, e.g., (op, a, b) and the value is the result
of the operation. Our experiment shows an operation cache
can significantly speed up NDD operations, thereby making
the NDD-based verifiers faster. For example, NDD-based
SRE [58] with an operation cache is shown to be over 10×
faster than without an operation cache.

4.3 Using NDD
We show how to use the APIs of NDD library to realize the
same data plane verification task as using BDD libraries. The



Table 2: Number of modified LOC when replacing BDD with
NDD, for different verifiers. Note that the numbers exclude
those for trivial string replacement (e.g., “BDD”→ “NDD”).

Verifiers AP Verifier APT APKeep SRE Batfish

Library JDD JDD JDD JDD JavaBDD
Add +25 +84 +66 +205 +8

Delete -159 -167 -311 -53 -7

bottom of Figure 2 shows the code snippet for data plane
verification based on NDD. The logic is mostly the same
with that of BDD, with key differences including: (1) NDD
creates a single variable with 32 bits, instead of 32 boolean
variables (Line 1); (2) NDD uses a single line of atomize
to automatically compute atoms, after which the predicate of
each port becomes an atomized NDD (Line 3); (3) When com-
puting reachability based on atomized NDDs, verifiers use
the same and operation as the standard (non-atomized) NDD,
and therefore fully agnostic of atoms (Line 8). Details about
this case, and two more use cases for incremental data plane
verification and data plane verification with transformers can
be found in Appendix F.

5 Implementation

The NDD Library. We implemented a library of NDD with
∼2K lines of Java code, based on JDD [8], a BDD library used
by many verifiers like AP Verifier [51], APT [53], APKeep
[57], SRE [58], etc. In addition, we integrated the NDD library
as a new factory in JavaBDD, with another∼100 lines of code,
so that verifiers using JavaBDD, e.g., Batfish [4], Campion
[47], can switch to use NDD instead.

Network verifiers based on NDD. We use the NDD library
to replace the BDD library in 3 data plane verifiers, and 2
control plane verifiers. Table 2 shows the number of mod-
ified LOC for each verifier. As we can see, the number of
added LOC is small since the NDD exposes similar APIs as
BDD, and existing verifiers can directly use them without
modifications. On the other hand, the number of deleted LOC
is slightly larger. The reason is that NDD natively supports
the computation of atoms, and therefore we remove the cor-
responding codes in those verifiers. An exception is SRE,
which uses customized algorithms to traverse BDDs, and we
need to adapt those algorithms to NDDs, with more modified
LOC. Therefore, we conclude that the NDD library offers a
drop-in replacement for BDD-based verifiers, with a small
modifications to their original code base. More details can be
found in Appendix A.1.

6 Evaluation

We evaluate the performance of NDD in terms of running
time and memory cost, and compare to that of using BDD.
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Figure 8: Running time in datacenter networks.

6.1 Setup

Datasets. We use three types of datasets for experiments.
(1) Virtualized datacenter networks (multi-layer networks).

We use the virtualized datacenter network datasets (based
on VXLAN) to evaluate the performance of NDD on packet
transformers. The datasets are synthesized according to pro-
duction networks [36,55], consisting of 7 different sizes (from
6 to 500 leaf routers), and for each size there are 5 types of
updates, e.g., adding a subnet or virtual network. Details can
be found in both [36] and Appendix A.2.

(2) WAN and campus networks (single-layer networks).
We use three real networks that are extensively used by data
plane verifiers [30,33,51,53,57], i.e., the Stanford network [5]
of 16 nodes, the Internet2 network [6] of 9 nodes, and the
Purdue network [46] of 1646 nodes. The Internet2 has only
forwarding rules, while the other two have both forwarding
and ACL rules. Details can be found in Appendix A.2.

(3) Fat trees. To evaluate the performance of our NDD
libraries for control plane verification, we use different sizes
(from 20 to 500 nodes) of fat trees running BGP. The datasets
are synthesized and used by SRE [58].

BDD variable ordering. When comparing with data
plane verifiers, we use the ordering of srcIP < dstIP
< srcPort < dstPort < protocol for single-layer
networks, and innerDstIP < srcIP < vni < srcEPG <
dstEPG < outerDstIP for multi-layer networks. When
comparing with SRE, we follow the same ordering as SRE,
i.e., placing header variables before link variables, and the
header variables follow the above ordering as the single-layer
networks. For Batfish, we use its default ordering of dstIP <
srcIP < dstPort < srcPort < protocol < flags.

All experiments run on a server with 2× 12-core Intel Xeon
CPUs @ 2.3GHz and 256G RAM (a single core is used).

6.2 Data plane verification: running time
We run the two data plane verifiers, i.e., APKeep and KatraR,
to check all-pair reachability on the multi-layer (virtualized
datacenter) networks and the single-layer networks, and com-
pare the running time when using BDD and NDD.

Multi-layer networks (snapshot). Figure 8(a) shows the
total time of computing atoms and checking reachability
on all snapshots of the virtualized datacenter networks. AP-
Keep(NDD) is the only verifier that runs to complete on



Table 3: Performance in virtualized datacenter networks. Columns 2-4 show memory overhead, columns 5-7 show BDD nodes
used for representing atoms, columns 8-10 show the number of atoms and columns 11-13 show the number of new atoms
introduced by updates. TO means timeout (> 24h).

# Leaf nodes
Memory overhead(GB) BDD nodes Atoms New atoms

APKeep KatraR APKeep APKeep KatraR APKeep APKeep KatraR APKeep APKeep KatraR APKeep
(BDD) (BDD) (NDD) (BDD) (BDD) (NDD) (BDD) (BDD) (NDD) (BDD) (BDD) (NDD)

6 4.36 0.17 0.01 1354365 114536 2195 28077 5467 112 8043 1309 7
10 > 20 2.88 0.01 TO 513069 3716 TO 25542 195 TO 4062 10
20 > 32 > 115 0.05 TO TO 8659 TO TO 483 TO TO 14
50 > 80 > 115 0.16 TO TO 19775 TO TO 1173 TO TO 14
100 > 180 > 115 0.45 TO TO 37127 TO TO 2321 TO TO 15
200 > 180 > 115 1.42 TO TO 69934 TO TO 4623 TO TO 15
500 > 180 > 115 7.19 TO TO 161603 TO TO 11544 TO TO 15

all snapshots, while the other two BDD-based verifiers ei-
ther time out (>24h), or run out of memory (>256GB). For
snapshots that all verifiers finish, APKeep(NDD) is much
faster than the other two: for dataset 1 with 6 leaf nodes, AP-
Keep(NDD) runs >10× and 105× faster than KatraR(BDD)
and APKeep(BDD), respectively.

Multi-layer networks (update). Figure 8(b) shows the aver-
age time to incrementally check properties after the 5 types of
update. Since incrementally checking the updates relies on fin-
ishing the check of snapshots, we set the running time of the
two BDD-based verifiers to maximum for snapshots that they
can not finish. Still, APKeep(NDD) is orders-of-magnitude
faster than two BDD-based verifiers.

Single-layer networks (snapshot). Figure 9 shows the run-
ning time for the three single-layer networks. We do not
include the results for KatraR, since it has no performance
improvement over APKeep on these single-layer networks.
We can see that for Stanford and Internet2, the running times
of BDD and NDD are comparable, while for Purdue, using
NDD is 3× faster than using BDD. The reason for the limited
speedup is that these networks mostly match a single field,
i.e., dstIP (even Stanford and Purdue have ACL rules that
match 5-tuples, the number of ACL rules is quite small). This
makes the benefits of decoupling fields less significant than
in multi-layer networks.

Single-layer networks (update). To simulate updates on
single-layer networks, we choose the Purdue dataset, which
has relatively more ACL rules such that the result are more
statistically significant. For each ACL rule r, we initially insert
all ACL rules other than r, and then insert r and measure the
time to update the network model. As shown in Figure 10,
the running time for APKeep(BDD) is highly skewed: most
updates cost less than 50ms, while 1% of them cost 300ms
to 2000ms. In contrast, when using NDD, the update time is
always below 150ms. A possible reason is that NDD creates
much less atoms after each update: for 7 out of 2707 updates,
APKeep(BDD) creates >3000 new atoms (some of them will
be merged later), while APKeep(NDD) just creates at most 24
new atoms after each update (see Appendix A.4 for details).

6.3 Data plane verification: memory cost

Table 3 shows the memory usage of different verifiers, com-
puted as the difference of JVM memory usage before and
after verification. As shown in Table 3 columns 2-4, the
memory usage of APKeep(NDD) is orders-of-magnitude
smaller than its BDD counterpart, and also KatraR(BDD).
Specifically, for the network of 6 leaf nodes, the memory
cost of APKeep(NDD) is less than 1/100 and 1/10 that of
APKeep(BDD) and KatraR(BDD), respectively. The reason
that APKeep(BDD) requires 4.36GB memory here is that the
network matches 6 fields, leading to an explosion of atoms
(28077 atoms creates over 106 BDD nodes). As shown in
Columns 5-7, the number of BDD nodes of the two BDD-
based verifiers is quite large, quickly blowing up the BDD
node table (a maximum of O(232/3) nodes as in JDD), while
the number of BDD nodes for APKeep(NDD) is relatively
small. This shows the power of NDD in reducing the num-
ber of BDD nodes. As for single layer-networks, using NDD
reduces the memory cost of APKeep by half on the Purdue
dataset, and has comparable memory cost on the Stanford and
Internet2 datasets, compared to using BDD.

A major factor for the memory cost is the number of atoms.
We continue to study the the number of atoms using NDD
and BDD, respectively. Columns 8-10 reports the number of
atoms, where the number for APKeep(NDD) is the sum of
atoms for each field. As we can see, the number of atoms for
APKeep(NDD) increases almost linearly with network size,
and is orders-of-magnitude smaller than those of the other
two BDD-based verifiers. Columns 11-13 further shows the
number of newly created atoms after each update. We can
see that BDD-based verifiers may create thousands of atoms
after updates, while APKeep(NDD) always creates a rather
small number (≤15) of atoms after each update. The above
results show NDD allow verifier scale better to large networks
without explosion of atoms.

6.4 Handling packet transformer

To understand how NDD supports packet transformers, we
synthesize a set of NAT rules for the Purdue dataset. We
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randomly select k ports not connected to any other, and for
each of them add two NAT rules matching srcIP or dstIP , one
for each direction. Then, we randomly select another k ports
and for each of them add two twice NAT rules (matching
srcIP and dstIP simultaneously), one for each direction.

Figure 11 shows the running time of APKeep when using
BDD and NDD, respectively. We can see that APKeep(NDD)
is 10× faster than APKeep(BDD) even when there are only 4
NAT rules; and 100× faster when 40 NAT rules are inserted.
APKeep(BDD) runs out of memory after inserting 80 NAT
rules, while APKeep(NDD) runs to complete up to 2000 NAT
rules. The reason that NDD can handle packet transformers
more efficiently than BDD is NDD computes atoms separately
for srcIP and dstIP, leading to much fewer atoms.

6.5 Control plane verification

We run two control plane verifiers, i.e., Batfish and SRE, using
both NDD and BDD, to check all-pair reachability on fat tree
topologies under k = 1,2,3 link failures. For Batfish(NDD),
we create 4 NDD variables for the 32-bit IP address, each of
which has 8 bits. For SRE(NDD), we create 8 NDD variables,
each with the same number of bits representing the up/down
state of links. An exception is the 500-node fattree, for which
we create 16 NDD variables.

As shown in Figure 12, SRE has a better scalability by
replacing BDD with NDD: for k = 1 failure on the 500-node
fattree, SRE(BDD) aborts due to BDD table overflow, while
SRE(NDD) can run to complete. We confirm the improved
scalability is owing to the reduction of BDD nodes (Appendix
A.5). For Batfish, however, the improvement of scalability is
limited by using NDD. This is because the datasets only use a
single field, i.e., dstIP, and Batfish doesn’t have link variables
as SRE. While we still find the number of BDD nodes in

Batfish is reduced by using NDD (Appendix A.5). The reason
is the synthesized IPs in this dataset share the same 16-bit
prefix, i.e., 10.0.∗ .∗. Using BDD, all packet sets need a copy
of BDD nodes for those 16 bits (these nodes can not be shared
by the packet sets since they differ in the last 16 bits).
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Figure 13: NDD vs. BDD on modified Purdue dataset, with
different number of ACL rules matching all the 5 fields.

6.6 The importance of field locality

To study the importance of field locality for the effectiveness
of NDD, we modified ACL rules in the Purdue dataset, so
that more rules will match all the five fields (against randomly
generated values). As shown in Figure 13, both the number of
atoms and the running time of APKeep(NDD) grow linearly
with the number of modified rules. In contrast, the number
and time of APKeep(BDD) significantly decrease when all
ACL rules match all fields. The reason is that when all rules
match all fields, the phenomenon of field locality disappears,
so the number of atoms when using BDD is not so large.
This implies that the performance gain of NDD relies on the
assumption of field locality, which generally hold in networks,
but can theoretically fail (as in this synthesized scenario).

7 Related Work

Besides the classic BDD, researchers have proposed many
variants of Decision Diagrams.

Decision diagrams with multiple terminals. Multi Terminal
BDD (MTBDD) [12, 22], also termed Algebraic Decision
Diagram (ADD), is a variant of BDD but with more than two
terminals. MTBDD can model multiple outcomes (rather than
true/false) of decisions, and have been used by some network



verifiers [16, 28, 35]. However, since MTBDDs still branch at
a single bit, they acknowledge the same limitations of BDD
when applied to network verification.

Decision diagrams branching on constraints. Forwarding
Decision Diagram (FDDb) [42, 43] is proposed to compile
NetKat programs (a set of IF-THEN-ELSE clauses). Each
FDDb node has two edges representing whether a packet
satisfies a specific constraint, e.g., dstIP = 10.0.0.1, or not.
When using it for network verification, we may need many
levels of nodes for each field, e.g., another level for dstIP ∈
192.168.0.0/16. Constrained Decision Diagram (CDD) [21]
is proposed to represent all solutions to a constraint satisfac-
tion problem (CSP). Different from FDDb, a CDD node can
have multiple edges, each representing a SMT constraint, e.g.,
x1 < x2 +4. In this sense, CDD represents a set of SMT con-
straints in the form of a decision diagram, but without solving
them. To obtain a truth assignment, CDD still needs to try all
possible values for variables in the constraints of each node
( cddFindall algorithm [21]). This can be inefficient when
the domain of the variable is large, e.g., if we encode dstIP
with single variable, CDD needs to try 232 values for each
edge labeled by a constraint on the variable of dstIP.

Decision diagrams branching on a field. Multi-valued Deci-
sion Diagram (MDD) is a diagram that branches on multiple
bits each time [44]. However, MDD has an edge for each
single value of these bit. This which makes MDD not scalable
for network verification, since a field often has many bits (e.g.,
a 32-bit IPv4 address requires 232 edges). Similarly, Interval
Decision Diagram (IDD) [45] and Firewall Decision Diagram
(FDDa) [29] branch based on one or multiple ranges of a field.
However, network verifiers often need to reason about arbi-
trary sets of packets, which lead to a huge number of disjoint
ranges, and using IDD or FDDa is not scalable. NDD differs
from the above DDs by using BDDs for a relatively small
number of edges for each field.

Other implementations of BDD. Apart from JDD and Jav-
aBDD, there are other excellent implementations of BDD.
For example, Sylvan [49] is a BDD implementation which
supports parallelism in both operation and algorithm level. De-
cision Diagram [1] is a native .NET implementation of BDD
with better performance than many other BDD libraries. It is
used by ZEN [17], a general and compositional framework for
network modeling. However, the above implementations still
suffer the memory/computation inefficiency when applied to
network verification, as discussed in this paper.

Other data structures. Early verifiers like Veriflow [34] and
HSA [33] use Trie and ternary bit vectors (TBV), respectively,
to represent packet sets. However, such data structures can-
not compactly encode arbitrary disjoint ranges. BDD-based
verifiers like AP Verifier [52] and APKeep [57] have been
shown to be orders of magnitude faster than HSA (based
on TBV) and Veriflow (based on Trie). More recently, re-
searchers proposed ddNF [18] and #PEC [31], which uses

disjunction normal form to represent packet sets. All these
data structures may perform well in some specific settings,
but are still unable to supersede BDDs in general scenarios.

In sum, existing data structures are either not compact or
inefficient for multiple fields: BDD is compact but the bit-
level encoding makes it inefficient for multiple fields; other
structures like Trie, CDD, MDD, etc. are more efficient for
multiple fields by encoding at field level, but they encode each
field with integers, ranges, constraints, etc., are thus not com-
pact. In addition, when applied to network verification, all
these data structures require verifiers to implement their own
computation of ECs over the whole network state, resulting
in a large number of ECs.

Theoretically, NDD can be seen as a special form of sym-
bolic automata [23], where the transitions among nodes are
boolean formulas. This paper is not fundamentally contribut-
ing to such theory, but provides a new design of design dia-
gram library customized for network verification tasks.

8 Discussion
Extending NDD with multiple terminals. Besides the stan-
dard BDD, the Multi-Terminal BDD (MTBDD) [12, 22] has
also been used by some network verifiers, e.g., ShapeShifter
[16], YU [35], ProbNV [28], etc. For example, YU uses
MTBDD to model the different (multiple) traffic volumes
on a link, under different failures, so as to verify whether the
link will be overloaded under some failures. We tentatively
think NDD can be extended to support multiple terminals,
such that it can apply to a broader range of network verifiers.
How to partition fields? For network verification, partition-
ing the packet header into to multiple fields, and encoding
each field with an NDD variable achieves good performance.
For more general scenarios where fields may not be quite
clear (links as in SRE), we leverage some heuristics: (1) vari-
ables encoding a complete semantics together should be par-
titioned into the same field, (2) variables appearing in the
same operand of BDD operations should be partitioned into
the same field.

9 Conclusion
This paper introduced Network Decision Diagram, a new
decision diagram customized for network verification. We
designed and implemented a library for NDD, and show it can
significantly reduce the memory and time for five BDD-based
network verifiers. Our future work includes extending NDD
with multiple terminals, making NDD library distributed and
parallel, and testing the NDD library with more verifiers.
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can be found at https://xjtu-netverify.github.io/papers/2025-
ndd-a-decision-diagram-for-network-verification.

A More Evaluation Results

A.1 Implementation Details

In the following, we give more details on the implementations
of the 5 verifiers with the NDD library.

AP Verifier [51] and APT [53]. AP Verifier is a pioneering
work that pre-compute atomic predicates based on BDD, and
APT extends AP Verifier to support packet transformers. We
used their open-source codes [2], and modified them to use
the NDD library. The modifications are to remove their imple-
mentations of computing atomic predicates, and re-implement
it with the atomize API of NDD.

APKeep [57]. APKeep is a data plane verifier that extends
AP Verifier to incrementally update atomic predicates, also
based on BDD. We used its source codes [3], and modified
it to use the NDD library. The modifications are to remove
its previous implementation of incremental update of atomic
predicates, and re-implement it with the update API of NDD.

Katra [13]. Katra is a data plane verifier proposed for multi-
layer networks. Katra introduces a novel partial equivalence
classes to significantly reduce the total number of ECs, and
is proven to be more efficient than APKeep when verifying
multi-layer networks. We are interested in whether we can
achieve the same or even better efficiency as Katra, by simply
changing the underlying data structure, without computing
partial equivalence classes. Therefore, we re-implemented
Katra based on BDD, referred to as KatraR, and further ex-
tended it to support VXLAN overlay networks in Table 5. We
confirmed the correctness of KatraR based on the datasets syn-
thesized according to [13]. However, we did not implement
the NDD version of Katra since the core difference of Katra
from APKeep is its novel partial equivalence classes based
on BDD, and replacing BDD with NDD will make Katra no
different from APKeep (NDD).

SRE [58]. SRE is a control plane verifier that jointly en-
codes failure scenarios and packet headers, so as to scale to
large networks. We used the authors’ implementation and
replaced its JDD library with our NDD library. For packet
headers, we encode each header field with an NDD variable;
for failure scenarios, we divide the set of all links evenly into
8 groups, and encode each link group with an NDD variable.

Batfish [19, 25]. Batfish is an open-source control plane
verifier, which uses JavaBDD [7]. We replaced the BDD fac-
tory in JavaBDD with our NDD factory, with small modifica-
tions of Batfish, including declaring fields and initializing the
unique table and operation cache.

A.2 Statistics of datasets
Table 4 and Table 5 show the experimental datasets.

Table 4: Datasets for WAN and campus networks.
Networks Nodes Links Forwarding rules ACL rules

Purdue 2,159 3,607 3.52×106 2707
Stanford 124 182 3.84×103 686
Internet2 9 56 1.26×105 0

Table 5: Datasets for virtualized datacenter networks.

Networks
Leafs

(VPCs)
Subnets
(VRFs)

Forwarding
rules

MCS
rules

Static
routes

1 6 36 856 12 12
2 10 100 2,508 20 20
3 20 400 13,428 40 40
4 50 1,000 59,808 100 100
5 100 2,000 144,508 200 200
6 200 4,000 388,908 400 400
7 500 10,000 1,528,538 1,000 1000

A.3 Micro-benchmark results

Table 6: Running time of each stage and the number of atoms
for forwarding and ACL rules on Purdue dataset.

Verifiers IPv4 ACL Property
Check(s)Time(s) Atoms Time(s) Atoms

APKeep(BDD) 13.88 265 22.37 3893 46.11
APKeep(NDD) 14.87 265 7.04 411 0.88

The per-stage running time for Purdue is shown in Table 6.
NDD uses more time than BDD when processing forwarding
rules (Column 2), due to the overhead of maintaining per-field
atoms; while NDD uses roughly 1/3 the time of BDD when
processing ACL rules (Column 4), since the ACL rules match
5-tuples. For checking properties, NDD takes much less time
than BDD (Column 6). This is because using BDD will result
in much more atoms than using NDD, as shown in column 5:
by using NDD, APKeep can reduce the number of atoms by
around 89.4%.

A.4 Number of new atoms after each update
Figure 14 shows the complement cumulative distribution of
the number of new atoms for each update in Purdue dataset.

A.5 Number of BDD nodes for Control Plane
Simulation

Figure 15 shows the number of used BDD nodes for SRE and
Batfish on the fattree datasets. The number of BDD nodes of
Batfish(BDD) is many times more than that of Batfish(NDD),
and the number of BDD nodes of SRE(BDD) is more than that
of SRE(NDD) by orders of magnitude, which shows memory
inefficiency of BDD.
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A.6 Number of edges in NDD
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Figure 16: The complement cumulative distribution of the
number of edges for each NDD node.

Figure 16 shows the number of edges for each NDD node
created by SRE(NDD) on the 80-nodes fattree network. More
than 99% of the nodes have no more than 10 edges, and all the
nodes have no more than 75 edges, which shows that NDD can
efficiently merge redundant edges with a high compression
ratio.

A.7 Number of atoms on edges to false

Figure 17 (a) shows the number of atoms that are labeled
on each edge pointing to the terminal node false. We can
see that almost 30% of these edges have more than 2000
atoms. Figure 17 (b) shows the percentage of atoms on edges
pointing to the false node to the total number of atoms of the
corresponding field. We can see that for 85% of these edges
have more than 95% of atoms of the corresponding field.
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Figure 17: (a) the number and (b) the percentage of atoms on
edges pointing to false.

Table 7: Time to solve the NQueens problem.

N 6 7 8 9 10 11 12

BDD (s) 0.017 0.023 0.04 0.223 0.615 2.567 19.109
NDD (s) 0.012 0.019 0.038 0.176 0.344 2.257 12.417

A.8 Performance of NDD for general problems
We compare the performance of BDD and NDD in solving the
NQueens problem, a widely recognized benchmark for BDD
libraries. For BDD, we use the implementation of the JDD
library, which is basically an implementation of algorithms
in [11]. For NDD, we declare each row as a field (therefore
there are N fields), and implement the same algorithm. Ta-
ble 7 shows that the time of BDD is around 1.5× that of
NDD for N = 12. This is because the BDD library has an
considerable overhead for aligning variables when computing
BDD conjunctions, especially for large N. This indicates the
phenomenon of “field locality” may not be limited to net-
work verification, and NDD may be used to speedup other
applications.

A.9 BDD variable orderings
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Figure 18: Running time of SRE on fattree (320 nodes, k = 1)
with random variable orderings. The two dotted lines repre-
sent the running time of SRE(BDD) and SRE(NDD) reported
in Figure 12, respectively.

As briefly mentioned in §2.2, one may wonder whether
we can mitigate limitations of BDD with a better variable
ordering. We discuss this for two different types of verifiers.

First, for verifiers that compute atoms, e.g., AP Verifier,
APT and APKeep, the performance is highly related to the
number of atoms, while little affected by the variable ordering.
Therefore, variable ordering makes little differences to their



performance when suffering explosion of atoms.

Second, for verifiers that do not compute atoms, e.g., SRE,
variable ordering indeed impact the performance. Here, we
use SRE(BDD) as an example to study such impact. We found
an ordering with header variables (dstIP) before link vari-
ables, which was used by SRE, always leads to better perfor-
mance. Therefore, when we run SRE(BDD), we first declare
the variables of dstIP, and then declare the link variables
with random order. Figure 18 reports the running time, where
we can see the time varies from 800s to 1200s with different
orderings, but is still much larger than that of SRE(NDD).
This confirms that re-ordering the variables does not funda-
mentally make BDD more efficient for network verification.

A.10 Comparing NDD to BDD arrays
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Figure 19: The complement cumulative distribution of the
number of BDD arrays to represent a predicate in SRE.
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on three methods.

We implement SRE based on BDD arrays, which simply
assembles per-field BDDs by conjunctions, and compare its
performance to that based on NDD and BDD, on a 80-node fat-
tree. Figure 19 shows the number of BDD arrays representing
each predicate, which is as large as 102, 103, 104 for k= 1,2,3,
respectively. Figure 20 further shows the running time. We
can see that using BDD arrays is orders-of-magnitude slower
than using NDDs, and even slower than directly using BDDs.
Especially when k = 3, using BDD arrays times out due to
too many BDD arrays.

B Algorithms of NDD operations

Algorithm 1 shows the implementation of apply(op,a,b),
where op can be and, or, diff; a and b are two NDDs. For
trivial cases such as either a or b is a terminal node, or a = b,
the algorithm directly returns the result (Lines 1-2). If the vari-
able of a and b is the same (Line 3), the algorithm recursively
performs apply for each successor of a and each successor
of b (Lines 4-5). Note that, the algorithm merges redundant
edges in Line 9. If the variable of a has a higher order, the
algorithm recursively performs apply for b and each succes-
sor of a (Lines 10-15). Finally, it looks for an NDD node (or
create a new node) from node table representing the result and
returns it (Line 16). The algorithm for atomized NDDs is the
same with the above, except that BDD operations of and and
or in Line 6, 9 and 15 change to set operations of intersect
and union. Note that, when we enable the optimization of
removing the false node (§4.2), the implementations of or
and diff need some minor modifications.

Algorithm 1: apply(op, a, b)
Input: a logical operator op ∈ {and,or,di f f}, and two

NDDs a and b.
Output: the result of logical operation a op b.

1 if a or b is a terminal node, or a = b then
2 return handleTrivialCases(op, a, b);

3 if var(a) = var(b) then
4 foreach ea ∈ edges(a) do
5 foreach eb ∈ edges(b) do
6 label← bdd.and(label(ea), label(eb));
7 if label ̸= bdd. f alse then
8 next← apply(op, next(ea), next(eb));
9 edgeMap[next]←

bdd.or(edgeMap[next], label);

10 else
11 if var(a)> var(b) then
12 swap(a, b);

13 foreach ea ∈ edges(a) do
14 next← apply(op, next(ea), b);
15 edgeMap[next]← bdd.or(edgeMap[next],

label(ea));

16 return mk(var(a), edgeMap);

Algorithm 2 shows the implementation of exist. If the
field variable of a has lower priority than f ield, the algorithm
directly returns a as the result (Lines 1-2). If the field vari-
able of a is equal to f ield, the algorithm applies existential
quantification by merging all successors of a through NDD’s
function of or (Lines 3-7). If the field variable of a has higher
priority than f ield, the algorithm invokes a new recursion for
each successor of a and merges results (Lines 8-12).

Algorithm 3 shows the implementation of atomize. It takes



Algorithm 2: exist(a, f ield)
Input: an NDD a and a variable f ield.
Output: an NDD with existential quantification on a for

variable f ield.
1 if var(a) > f ield then
2 return a;

3 else if var(a) = f ield then
4 sum← ndd. f alse;
5 foreach e ∈ edges(a) do
6 sum← apply(or, sum, next(e));

7 return sum;

8 else
9 foreach e ∈ edges(a) do

10 next← exist(next(e), field);
11 edgeMap[next]← bdd.or(edgeMap[next],

label(e));

12 return mk(var(a), edgeMap);

Algorithm 3: atomize(N)
Input: a set of NDDs N.
Output: a set of atomized NDDs N′ that are logically

equivalent to N.
1 labels← allLabels(N);
2 foreach f ield ∈ allFields(N) do
3 atoms[ f ield]← computeAtoms(labels[field]);

4 N′←{};
5 foreach n ∈ N do
6 N′← N′∪ atomizeNDD(n, atoms);

7 return N′;

a set of NDDs N to be atomized as input and returns a set of
atomized NDDs N′, which are logically equivalent to N. The
algorithm first collects all labels (BDDs) used by some of the
input NDDs, and group these labels by field (Line 1). Then,
the algorithm computes atoms for each field (Lines 2-3), in a
similar way as AP Verifier does. After that, it transforms the
each input NDD into a logically-equivalent atomized NDD
(Lines 4-6).

Algorithm 4 shows the implementation of update. It takes
as input an NDD δ and an atomized NDD a, δ is a predicate
to be atomized and a is used to accelerate the function. split
in Line 2 is a map that maps each old atom to be split to 2
new atoms. The algorithm first recursively traverses δ and a,
and detects the atoms to be split (Line 3), then performs the
split by replacing each old atom in labels of existing atomized
NDDs with 2 new atoms in split (Line 4). Since an atom may
be split many times by different label BDDs in δ, the function
repeatedly performs steps above until split is empty after Line
3. If the δ and a have the same variable, for each edge eδ of δ

and each edge ea of a, the function intersects the BDD on eδ

with only atoms held by ea to detect atoms to be split (Lines

Algorithm 4: update(δ,a)
Input: an NDD δ to be atomized; an atomized NDD a

satisfying δ⇒ a.
1 do
2 split←{} ;
3 updateRec(δ, a, split);
4 splitAtoms(split);
5 while ¬split.isEmpty();
6 Function updateRec(δ, a, split):
7 if δ = ndd.true then
8 return;

9 else if var(δ) = var(a) then
10 foreach eδ ∈ edges(δ) do
11 foreach ea ∈ edges(a) do
12 hit← f alse;
13 foreach ap ∈ label(ea) do
14 t← bdd.and(ap, label(eδ));
15 if t ̸= bdd. f alse then
16 hit← true;
17 if t ̸= ap then
18 split[ap]←

{t, bdd.diff(ap, t)};

19 if hit then
20 updateRec(next(eδ), next(ea), split);

21 else if var(δ)< var(a) then
22 foreach e ∈ edges(δ) do
23 foreach ap ∈ atoms[var(δ)] do
24 t← bdd.and(ap, label(e));
25 if t ̸= f alse and t ̸= ap then
26 split[ap]←{t, bdd.diff(ap, t)};

27 updateRec(next(e), a, split);

9-20). Note that, it only traverses successors of edges whose
atoms intersect with the label (Lines 19-20). If the variable of
δ has higher priority than that of a, the algorithm intersects
the labels with each atom of var(δ) (Lines 21-27).

Figure 21 shows an example for update, where (b) is an
NDD δ to be atomized, and (c) is an atomized NDD a. La-
bels on δ are per-field BDDs and labels on a are per-field
atoms. Relations of per-field BDDs and atoms are shown in
(a), where A1 = a1∨a

′
2 means A1 contains (is implied by) a1

and partially intersects (has a non-false conjunction) with a2.
The operation first chooses the left edge of δ and a, computes
conjunctions of A1 with a1 and a2, respectively, and splits a2
into new atoms a

′
2 and ¬a

′
2, such that A1 can be atomized.

Then, the operation tries to match the edges labeled by B1
and b1 in the second field. After that, the operation tries to
match the left edge of δ and the middle and right edges of
a, respectively, finds that A1 doesn’t intersect with a3 or a4,
and skips calculation in the second field. As shown above, A1
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Figure 21: An example for update operation. Ai and Bi are
BDDs; ai and bi are atoms. a

′
i means it implies ai, i.e., a

′
i⇒ ai.

only needs to intersect with atoms a1−4 which appear on the
paths from a to terminal true, rather than all atoms of the
field (e.g., atoms on the edge of a pointing to terminal false,
which are not shown in the figure), thereby accelerating the
operation. The steps are similar for the right edge of δ. Finally,
atoms a2,a3 and b1 are split, such that δ can be atomized as
shown in (d).

C Proof of canonicity of NDD

Definition 4. Boolean formulas. A boolean formula F has
n1 +n2 + · · ·+nk boolean variables, which can be grouped
into k fields f1, f2, . . . , fk, where field fi has ni consecutive
boolean variables xsi+1,xsi+2, . . . ,xsi+ni , where si = n1 +n2 +
· · ·+ni−1.

Definition 5. Truth assignments and restrictions. A
truth assignment of a field fi is denoted as Bi =
[bsi+1,bsi+2, . . . ,bsi+ni ], where b j ∈ {true, f alse}. A restric-
tion of F with respect to a variable x and a boolean constant
b, denoted as F [b/x], is defined as the same formula F, except
that the variable x is replaced with b. Similarly, we can extend
the definition to a field fi and a truth assignment Bi, as

F [Bi/ fi] = F [bsi+1/xsi+1,bsi+2/xsi+2, . . . ,bsi+ni/xsi+ni ]

Suppose bdd is a BDD defined over fi, and ∀Bi ∈ bdd,
F [Bi/ fi] is the same, then define the restriction of F with re-
spect to field fi and BDD bdd as Fbdd = F [Bi/ fi],∀Bi ∈ bdd.

Shannon expansion is the theoretical basis of BDD: a BDD
node encoding F branches on x, with a high edge assigning
true to x and pointing to the successor encoding F [1/x], and
a low edge assigning false to x and pointing to the successor
encoding F [0/x].

Definition 6. Single-bit Shannon expansion. First define
the if-then-else operator as x→ y0,y1 = (x∧ y0)∨ (¬x∧ y1).
Then, the Shannon expansion of formula F with respect to a
boolean variable x is defined as:

F = x→ F [1/x],F [0/x].

Since each NDD variable (i.e., field) has multiple bits, we
extend the above single-bit Shannon expansion to the follow-
ing multi-bit Shannon expansion.

Definition 7. Multi-bit Shannon expansion. Let BDD
be a set of BDDs satisfying

∨
bdd∈BDD bdd = true, and

∀bdd1,bdd2 ∈ BDD, bdd1 ̸= bdd2⇒ bdd1∧bdd2 = f alse.
Then, the Shannon expansion on formula F with respect to
field fi is:

F =
∨

bdd∈BDD
(bdd∧Fbdd) = f → Fbdd1 ,Fbdd2 , ...,Fbddn .

Definition 8. The formula encoded by an NDD. Suppose u
is an NDD node having a set of edges e1,e2, . . . ,en, Then, u
encodes a boolean formula Fu defined as:

Fu = var(u)→ Flabel(e1),Flabel(e2), ...,Flabel(en). (2)

Lemma 2. Canonicity of NDD. For any boolean function
F(x1,x2, · · · ,xN) over N boolean variables with ordering
x1 < x2 < · · · < xN , there is exactly one RONDD u with k
NDD variables and ordering f1 < f2 < · · ·< fk, where fi has
ni bits x1

i < x2
i < · · ·< xni

i , and N = ∑
k
i=1 ni, such that u can

represent F.

Proof. Clearly the lemma holds for k = 0, and for k ≥ 1, we
prove it by induction on k. The proof is adapted from that for
BDD canonicity [11].

Assume now that we have proven the lemma for k fields
( f2, f3, · · · , fk+1). We prove the lemma for k + 1 fields
( f1, f2, · · · , fk+1). For a boolean function F with k+1 fields,
the following two steps proves (1) there exists an NDD node
u that can represent F , and (2) if there is another NDD node
v, such that Fv = F , then we must have v = u.
(1) The existence of an NDD for boolean formula F . For
f1 with n1 bits, there are 2n1 distinct truth assignments, repre-
sented as a set B . Each B ∈ B , the restriction F [B/ f1] has no
more than k bits, and thus there exists an NDD node that can
represent it (according to our assumption for k). We can parti-
tion B into m classes C1,C2, . . . ,Cm, satisfying that ∀B1,B2 ∈
B,F [B1/ f1] = F [B2/ f1]⇔∃Ci,B1 ∈Ci,B2 ∈Ci. For each Ci,
there exists an NDD node vCi such that ∀B∈Ci, vCi represents
each F [B/ f1], and a BDD bddCi that can represent

∨
B∈Ci

B.
We create an NDD node u with var(u) = f1 and m edges, satis-
fying that ∀ei ∈ edges(u)⇒ label(ei) = bddCi ,next(ei) = vCi .
According to Definitions 7 and 8, we have

F = f1→ FbddC1
,FbddC2

, . . . ,FbddCm
= Fu

, meaning node u represents the formula F .
(2) The uniqueness of NDD for boolean formula F . There
are two cases to consider.

(i) u has a single edge e with label(e) = true and next(e) =
vC1 . This violates RONDD’s condition of no redundant node.
By reducing redundant nodes, u degenerates to vC1 , which is
canonic (canonicity of NDD with ≤ k fields).

(ii) u has more than one edges. Assume v is an NDD
node with Fv = F , and we need to show u = v. First, we
must have var(v) = f1; otherwise if var(v) ̸= f1, then the



assignment of f1 doesn’t affect F , and u must be an NDD
node with a single edge, which violates the assumption that
u is a RONDD. For ∀eu ∈ edges(u) and a truth assignment
∀B1 ∈ label(eu), we can find an edge ev ∈ edges(v) such that
B1 ∈ label(ev), because v must encode any truth assignment
in f1. In addition, we have next(eu) = next(ev) because these
two nodes encode the same formula F [B1/ f1] (canonicity
of NDD with ≤ k fields). For any other truth assignment
∀B2 ∈ label(eu),B2 ̸= B1, we can also find an edge ev′ ∈
edges(v) such that B2 ∈ label(ev′). We can get that next(ev)=
next(eu) = next(ev′), and if ev ̸= ev′ , it violates RONDD’s
condition of no redundant edges. Therefore, we get that
ev = ev′ . That means, for ∀eu ∈ edges(u), there must exist ev ∈
edges(v), such that label(eu)⇒ label(ev). Vice versa, we get
label(ev) ⇒ label(eu) and therefore label(eu) = label(ev)
and next(eu) = next(ev). Therefore, v and u have the same
variable and set of edges. According to the uniqueness of
RONDD, it follows that v = u.

D An example for explosion of atoms

We use an example in Figure 22 to show why the number of
atoms can explode when using BDDs. For simplicity of illus-
tration, we consider only dst IP/Port fields, and suppose
ACL rules at port 1 of D have not been inserted.

Using BDD, a data plane verifier, i.e., APKeep, works in
following steps. First, it splits each node (device) in (a) into
elements in (b), each of which represents a single action in
networks, e.g., forwarding, filter. Then, the verifier encodes
match conditions of rules with BDDs, and computes port pred-
icates for each element. The predicates are shown in (c) with
labels of B1−B6. Packets encoded in a port predicate will be
forwarded to the related port or pass the related filter. After
that, the verifier computes atoms in (d), each of which repre-
sents a set of packets with the same global behaviour. Sup-
pose for now there are only forwarding rules matching dstIP.
There are only 3 different behaviors, which correspond to
dstIP ∈ 00, 01 and 1*, respectively. Suppose there are also
ACL rules matching dstPort, and the number of behaviours
(atoms) will increase to 3 × 3 = 9, a cross-product of the 3
different behaviors for each of the two fields (B1−3 for dstIP,
B4, B5−B4 and ¬B5 for dstPort). As shown in (d), the three
sub-structures of BDD nodes for dstIP are combined with
the three sub-structures of BDD nodes for dstPort, resulting
in 20 nodes in total. As shown in (e), the verifier replaces each
port predicate in (b) with an equivalent set of atoms in (d).
Then, as shown in (f), the verifier injects all atoms into A and
traverses the network with a set of reachable atoms. At each
element, it intersects the set of reachable atoms with atoms
of each port of the element by using set operation ∩ and ∪,
and forwards the result to the next element. Finally, atoms of
A1−3,5,6,8 can pass port 1 of D from A.

Using NDD, in contrast, the data plane verifier also com-
putes port predicates with logical operations of ∧, ∨ and ¬ as
shown in (g), whose edges are labeled by BDDs in (c). Then,
it collects all per-field BDDs on the edges, and calculates per-
field atoms. As shown in (h), comparing with 3×3 = 9 atoms
for the BDD-based verifier, there are only 3+ 3 = 6 atoms
for the NDD-based verifier, labeled by D1−3 and E1−3. After
that, as shown in (j), the verifier atomizes each port predicate
of NDDs in (g) by atomized NDDs in (i). For example, the
BDD label B5 on the edge of C5 encoding dstPort = 0∗, is
replaced by atoms E1 and E2 encoding dstPort = 00 and 01,
respectively. Finally, the verifier traverses the network and
computes reachability by the operation ∧ and ∨ of atomized
NDD and the reachable packets are encoded by F8.

E An example for BDD arrays

To show the limitation of simply assembling per-field BDDs
as arrays, let us take a look at an example in Figure 23 (a),
where we use BDD arrays to represent packet sets that are
reachable from A to D in the network in Figure 3. Specifically,
each array has four BDDs representing four fields, i.e., src
IP/Port and dst IP/Port. Initially, an array of {****, **,
**, **} which represents all packets is injected at device A.
Then, each device filters the arrays based on its forwarding or
ACL rules, and sends the resultant arrays to the next hops. At
device D, we end up with 9 arrays which collectively represent
all reachable packets from A to D. These 9 arrays correspond
to a product of 3×3 paths from the root nodes of the three
BDDs in Figure 4 (a) to the BDD terminal node true (3
sub-paths for srcIP/Port and 3 sub-paths for dstIP/Port). 9
arrays are not a big issue in the example, but what we want
to highlight here is the number of arrays can grow quickly
due to a cross-product effect. In real scenarios, there can
be over O(104) arrays even when the network is very small
(see Appendix A.10 for details). Figure 23 (b) shows the
NDD representing reachable packets from A to D on the right.
NDD compactly represents compositions of sub-paths from
different fields by a form of decision diagram. Specifically, the
3 sub-paths for dst IP/Port are represented once by an NDD
node of the dstIP field, and the 3 sub-paths for src IP/Port
share such NDD node without representing the 3 sub-paths
for dst IP/Port by 3 times, and therefore occupies much less
memory than BDD arrays in practice.

F Use cases of NDD in network verification

F.1 Automatic atomization
We use AP Verifier [51], a data plane verifier, as an example
to show how to use the NDD APIs to automatically compute
atoms.

Step 1. Computing port predicates. Using NDD, we first
use the createVar function to declare the header fields (i.e.,
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Figure 22: An example for explosion of atoms when using BDDs.

5-tuple). Then, we use the same algorithms as in AP Verifier
to compute port predicates, with the only difference that BDD
operations are replaced with NDDs operations (apply).

Step 2. Computing atomic predicates. Instead of comput-
ing atoms using the port predicates with a custom algorithm
(a two-fold loop implemented in AP Verifier), we use the
atomize function with the port predicates as input. The func-
tion will compute atoms for each field, and return the atomized
NDDs, a new NDD with each BDD on an edge replaced by
the equivalent sets of atoms.

Step 3. Checking reachability. We follow the same ap-
proach in AP Verifier to check network reachability, which
maintains a set of atoms during the traversal, and performs
intersections on the set with those of the ports being traversed.
The difference is that the traversal uses logical operations on
atomized NDD (e.g., and, or), instead of set operations, as
in AP Verifier. In this sense, the process is similar to using

BDDs without computing atoms, but can still enjoy a speedup
due to computing per-field atoms. Note here the logical opera-
tions on atomized NDDs are different from those of standard
NDDs: since labels of edges are sets of atoms in atomized
NDD, the operations on labels become set operations instead
of BDD operations.

F.2 Incremental update of atoms

We use APKeep [57], an incremental data plane verifier, as an
example to show how to use the NDD APIs to incrementally
update the atoms.

Step 1. Identifying changes. This step takes rule insertions
or deletions as input, and calculates changes of forwarding
behaviors. A change is represented as a tuple ( f rom, to,δ),
meaning that packets with headers in δ are forwarded to port
f rom before the update and to port to after the update. This
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step is identical to that of APKeep.
Step 2. Updating atoms. This step takes changes from step

(1) and updates the set of atoms. For each change in the form
of ( f rom, to,δ), it first gets the atomized port predicate a of
port f rom and invokes update(δ,a) to update atoms.

Step 3. Transferring atoms. After step (2), δ can be atom-
ized. This step atomizes δ and transfers it from port f rom to
port to using the diff and or operations for atomized NDD.

F.3 Handling packet transformers
We show how to use the NDD APIs to efficiently handle
packet transformers, which refer to rules that rewrite, encap-
sulate, or decapsulate packets. A packet transformer can be
represented as a tuple (match, f ield,action), where match is
the matching condition, f ield is the field to be transformed,
and action is the value to rewrite/encapsulate.

Step 1. Computing port predicates. For each action of trans-
formers, e.g., encapsulating a new IP header with destina-
tion IP 10.0.0.1/32 for packets from source IP 192.0.1.0/24,
the verifier creates a logical port on the device of the trans-
former. Each logical port Pi has two predicates: Pi.match,
an NDD encoding the match conditions, e.g., innerSrcIP=
192.0.1.0/24, and Pi.action, an NDD encoding the actions,
e.g., outerDstIP= 10.0.0.1/32. All these predicates are
computed as in AP Verifier [51].

Step 2. Atomizing predicates. In this step, the verifier at-
omizes the predicates computed by step 1, using the NDD
API atomize, in the same way as §F.1. The differences is
that both the Pi.match and Pi.action are used for computing
the atoms.

Step 3. Checking properties. In this step, when the packet
set pkt (an atomized NDD) reaches a transformer, the verifier
enumerates each logical port of the transformer: for each
port Pi, it computes the conjunction of pkt and Pi.match, an
atomized NDD encoding the match conditions. This is the
same as §F.1. If the conjunction is not false, and the type

of the transformer is decapsulate or rewrite, the verifier
erases the original value of pkt on the field Pi. f ield, e.g.,
innerSrcIP, using the exist API of NDD. If the type is
encapsulate or rewrite, the verifier sets a new value of
pkt on the field Pi. f ield, e.g., outerDstIP, by computing the
conjunction of pkt and Pi.action. The output is denoted as
pkti. Finally, the verifier merges the output pkti of each logical
port Pi into a packet set pkt ′, and forwards it to the next hop.

G The usage of BDD in network verification

Table 8 shows an incomplete list of network verifiers based
on BDDs.

Table 8: Network verifiers based on BDD.!means the veri-
fier has already been re-implemented with our NDD library.

Verifier BDD library Symbolic state Impl.

D
at

a
pl

an
e

AP Verifier [51] JDD packets !

APT [53] JDD packets !

APKeep [57] JDD packets !

Katra [13] DD [1] packets

PPV [55] JavaBDD packets

MNV [36] JDD packets

ConfigChecker [10] Buddy packets

C
on

tr
ol

pl
an

e

Batfish [19, 25] JavaBDD packets !

SRE [58] JDD failures, packets !

Expresso [50] JDD route adv., packets

NV [27] CUDD routes

ProbNV [28] CUDD routes

ShapeShifter [16] unknown routes

DNA [56] JDD packets

ERA [24] JDD routes

Bonsai [15] JavaBDD packet/route filters

Campion [47] JavaBDD packet/route filters
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